High-resolution generative adversarial neural networks applied to histological images generation

Descripción del Articulo

The present work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU), the Office of Research of Universidad Nacional de Ingeniería (VRI - UNI) and the research management office (OGI...

Descripción completa

Detalles Bibliográficos
Autores: Mauricio A., López J., Huauya R., Diaz J.
Formato: objeto de conferencia
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/634
Enlace del recurso:https://hdl.handle.net/20.500.12390/634
https://doi.org/10.1007/978-3-030-01421-6_20
Nivel de acceso:acceso abierto
Materia:Statistical correlation
Deep learning
Diagnosis
Medical imaging
Neural networks
Diagnostic algorithms
Generative Adversarial Nets
High resolution
Histological images
Learning-based methods
Photo realistic image synthesis
Photorealistic images
Image analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_b5f59ab20e53a68bab6ac77f641e663b
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/634
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv High-resolution generative adversarial neural networks applied to histological images generation
title High-resolution generative adversarial neural networks applied to histological images generation
spellingShingle High-resolution generative adversarial neural networks applied to histological images generation
Mauricio A.
Statistical correlation
Deep learning
Diagnosis
Medical imaging
Medical imaging
Neural networks
Diagnostic algorithms
Generative Adversarial Nets
High resolution
Histological images
Learning-based methods
Photo realistic image synthesis
Photorealistic images
Image analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short High-resolution generative adversarial neural networks applied to histological images generation
title_full High-resolution generative adversarial neural networks applied to histological images generation
title_fullStr High-resolution generative adversarial neural networks applied to histological images generation
title_full_unstemmed High-resolution generative adversarial neural networks applied to histological images generation
title_sort High-resolution generative adversarial neural networks applied to histological images generation
author Mauricio A.
author_facet Mauricio A.
López J.
Huauya R.
Diaz J.
author_role author
author2 López J.
Huauya R.
Diaz J.
author2_role author
author
author
dc.contributor.author.fl_str_mv Mauricio A.
López J.
Huauya R.
Diaz J.
dc.subject.none.fl_str_mv Statistical correlation
topic Statistical correlation
Deep learning
Diagnosis
Medical imaging
Medical imaging
Neural networks
Diagnostic algorithms
Generative Adversarial Nets
High resolution
Histological images
Learning-based methods
Photo realistic image synthesis
Photorealistic images
Image analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Deep learning
Diagnosis
Medical imaging
Medical imaging
Neural networks
Diagnostic algorithms
Generative Adversarial Nets
High resolution
Histological images
Learning-based methods
Photo realistic image synthesis
Photorealistic images
Image analysis
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The present work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU), the Office of Research of Universidad Nacional de Ingeniería (VRI - UNI) and the research management office (OGI - UNI).
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv 9783030014209
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/634
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-01421-6_20
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85054798854
identifier_str_mv 9783030014209
2-s2.0-85054798854
url https://hdl.handle.net/20.500.12390/634
https://doi.org/10.1007/978-3-030-01421-6_20
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883106246426624
spelling Publicationrp00530500rp00914500rp01293600rp00946500Mauricio A.López J.Huauya R.Diaz J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20189783030014209https://hdl.handle.net/20.500.12390/634https://doi.org/10.1007/978-3-030-01421-6_202-s2.0-85054798854The present work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU), the Office of Research of Universidad Nacional de Ingeniería (VRI - UNI) and the research management office (OGI - UNI).For many years, synthesizing photo-realistic images has been a highly relevant task due to its multiple applications from aesthetic or artistic [19] to medical purposes [1, 6, 21]. Related to the medical area, this application has had greater impact because most classification or diagnostic algorithms require a significant amount of highly specialized images for their training yet obtaining them is not easy at all. To solve this problem, many works analyze and interpret images of a specific topic in order to obtain a statistical correlation between the variables that define it. By this way, any set of variables close to the map generated in the previous analysis represents a similar image. Deep learning based methods have allowed the automatic extraction of feature maps which has helped in the design of more robust models photo-realistic image synthesis. This work focuses on obtaining the best feature maps for automatic generation of synthetic histological images. To do so, we propose a Generative Adversarial Networks (GANs) [8] to generate the new sample distribution using the feature maps obtained by an autoencoder [14, 20] as latent space instead of a completely random one. To corroborate our results, we present the generated images against the real ones and their respective results using different types of autoencoder to obtain the feature maps.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessStatistical correlationDeep learning-1Diagnosis-1Medical imaging-1Medical imaging-1Neural networks-1Diagnostic algorithms-1Generative Adversarial Nets-1High resolution-1Histological images-1Learning-based methods-1Photo realistic image synthesis-1Photorealistic images-1Image analysis-1https://purl.org/pe-repo/ocde/ford#2.02.04-1High-resolution generative adversarial neural networks applied to histological images generationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/634oai:repositorio.concytec.gob.pe:20.500.12390/6342024-05-30 15:35:52.031http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="5931ab74-9857-4bfb-a055-a04514f02131"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>High-resolution generative adversarial neural networks applied to histological images generation</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-01421-6_20</DOI> <SCP-Number>2-s2.0-85054798854</SCP-Number> <ISBN>9783030014209</ISBN> <Authors> <Author> <DisplayName>Mauricio A.</DisplayName> <Person id="rp00530" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>López J.</DisplayName> <Person id="rp00914" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Huauya R.</DisplayName> <Person id="rp01293" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Diaz J.</DisplayName> <Person id="rp00946" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Statistical correlation</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Diagnosis</Keyword> <Keyword>Medical imaging</Keyword> <Keyword>Medical imaging</Keyword> <Keyword>Neural networks</Keyword> <Keyword>Diagnostic algorithms</Keyword> <Keyword>Generative Adversarial Nets</Keyword> <Keyword>High resolution</Keyword> <Keyword>Histological images</Keyword> <Keyword>Learning-based methods</Keyword> <Keyword>Photo realistic image synthesis</Keyword> <Keyword>Photorealistic images</Keyword> <Keyword>Image analysis</Keyword> <Abstract>For many years, synthesizing photo-realistic images has been a highly relevant task due to its multiple applications from aesthetic or artistic [19] to medical purposes [1, 6, 21]. Related to the medical area, this application has had greater impact because most classification or diagnostic algorithms require a significant amount of highly specialized images for their training yet obtaining them is not easy at all. To solve this problem, many works analyze and interpret images of a specific topic in order to obtain a statistical correlation between the variables that define it. By this way, any set of variables close to the map generated in the previous analysis represents a similar image. Deep learning based methods have allowed the automatic extraction of feature maps which has helped in the design of more robust models photo-realistic image synthesis. This work focuses on obtaining the best feature maps for automatic generation of synthetic histological images. To do so, we propose a Generative Adversarial Networks (GANs) [8] to generate the new sample distribution using the feature maps obtained by an autoencoder [14, 20] as latent space instead of a completely random one. To corroborate our results, we present the generated images against the real ones and their respective results using different types of autoencoder to obtain the feature maps.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).