Comparison of two approaches for attenuation imaging using the spectral log difference method: Regularized inversion versus image filtering

Descripción del Articulo

Attenuation imaging using spectral techniques such as the spectral log difference (SLD) method suffers from a severe trade-off between spatial resolution and estimation variance. Recently, the regularized spectral log difference (RSLD) method was proposed as a technique that extends such trade-off b...

Descripción completa

Detalles Bibliográficos
Autores: Coila A.L., Lavarello Montero R.J.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2777
Enlace del recurso:https://hdl.handle.net/20.500.12390/2777
https://doi.org/10.1117/12.2292690
Nivel de acceso:acceso abierto
Materia:total variation
Attenuation imaging
image denoising
regularization
spectral log difference
http://purl.org/pe-repo/ocde/ford#3.02.28
Descripción
Sumario:Attenuation imaging using spectral techniques such as the spectral log difference (SLD) method suffers from a severe trade-off between spatial resolution and estimation variance. Recently, the regularized spectral log difference (RSLD) method was proposed as a technique that extends such trade-off by incorporating spatial priors (i.e., total variation) in the inversion process. However, the reduction of the variance of attenuation images could also be accomplished by post-processing of the attenuation maps using noise reduction techniques. The main goal of this study is to determine which strategy (i.e., noise handling during or after the attenuation image reconstruction) provides attenuation maps of better quality, both with synthetic data and experimental data obtained from calibrated physical phantoms. The results suggest that the noise rejection mechanism of RSLD significantly outperforms post-processing SLD images by filtering, nearly doubling the contrast-to-noise ratio for comparable values of estimation bias. © 2018 SPIE.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).