Non-rigid 3D Shape Classification based on Convolutional Neural Networks

Descripción del Articulo

We thank CIENCIACTIVA and their Undergraduate Thesis Program since this research has been funded by them. They have encouraged us to continue this journey and provided us with the required material to pursue our goal.
Detalles Bibliográficos
Autores: Quenaya, JFL, Del Alamo, CJL
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/985
Enlace del recurso:https://hdl.handle.net/20.500.12390/985
https://doi.org/10.1109/LA-CCI.2017.8285693
Nivel de acceso:acceso abierto
Materia:solid modelling
convolution
feature extraction
feedforward neural nets
image classification
learning (artificial intelligence)
shape recognition
https://purl.org/pe-repo/ocde/ford#1.02.00
id CONC_a1c4ea42567d278441b802649585a9d2
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/985
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Non-rigid 3D Shape Classification based on Convolutional Neural Networks
title Non-rigid 3D Shape Classification based on Convolutional Neural Networks
spellingShingle Non-rigid 3D Shape Classification based on Convolutional Neural Networks
Quenaya, JFL
solid modelling
convolution
feature extraction
feedforward neural nets
image classification
learning (artificial intelligence)
shape recognition
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Non-rigid 3D Shape Classification based on Convolutional Neural Networks
title_full Non-rigid 3D Shape Classification based on Convolutional Neural Networks
title_fullStr Non-rigid 3D Shape Classification based on Convolutional Neural Networks
title_full_unstemmed Non-rigid 3D Shape Classification based on Convolutional Neural Networks
title_sort Non-rigid 3D Shape Classification based on Convolutional Neural Networks
author Quenaya, JFL
author_facet Quenaya, JFL
Del Alamo, CJL
author_role author
author2 Del Alamo, CJL
author2_role author
dc.contributor.author.fl_str_mv Quenaya, JFL
Del Alamo, CJL
dc.subject.none.fl_str_mv solid modelling
topic solid modelling
convolution
feature extraction
feedforward neural nets
image classification
learning (artificial intelligence)
shape recognition
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.es_PE.fl_str_mv convolution
feature extraction
feedforward neural nets
image classification
learning (artificial intelligence)
shape recognition
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description We thank CIENCIACTIVA and their Undergraduate Thesis Program since this research has been funded by them. They have encouraged us to continue this journey and provided us with the required material to pursue our goal.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv 978-1-5386-3734-0
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/985
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/LA-CCI.2017.8285693
dc.identifier.isi.none.fl_str_mv 416178900011
identifier_str_mv 978-1-5386-3734-0
416178900011
url https://hdl.handle.net/20.500.12390/985
https://doi.org/10.1109/LA-CCI.2017.8285693
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175831710072832
spelling Publicationrp02694600rp02695600Quenaya, JFLDel Alamo, CJL2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017978-1-5386-3734-0https://hdl.handle.net/20.500.12390/985https://doi.org/10.1109/LA-CCI.2017.8285693416178900011We thank CIENCIACTIVA and their Undergraduate Thesis Program since this research has been funded by them. They have encouraged us to continue this journey and provided us with the required material to pursue our goal.Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEEinfo:eu-repo/semantics/openAccesssolid modellingconvolution-1feature extraction-1feedforward neural nets-1image classification-1learning (artificial intelligence)-1shape recognition-1https://purl.org/pe-repo/ocde/ford#1.02.00-1Non-rigid 3D Shape Classification based on Convolutional Neural Networksinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/985oai:repositorio.concytec.gob.pe:20.500.12390/9852024-05-30 15:36:21.474http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fd8640cd-6361-4c79-98f9-a8ccc51d1766"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Non-rigid 3D Shape Classification based on Convolutional Neural Networks</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/LA-CCI.2017.8285693</DOI> <ISI-Number>416178900011</ISI-Number> <ISBN>978-1-5386-3734-0</ISBN> <Authors> <Author> <DisplayName>Quenaya, JFL</DisplayName> <Person id="rp02694" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Del Alamo, CJL</DisplayName> <Person id="rp02695" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>solid modelling</Keyword> <Keyword>convolution</Keyword> <Keyword>feature extraction</Keyword> <Keyword>feedforward neural nets</Keyword> <Keyword>image classification</Keyword> <Keyword>learning (artificial intelligence)</Keyword> <Keyword>shape recognition</Keyword> <Abstract>Over the years, the scientific interest towards 3D models analysis has become more popular. Problems such as classification, retrieval and matching are studied with the idea to offer robust solutions. This paper introduces a 3D object classification method for non-rigid shapes, based on the detection of key points, the use of spectral descriptors and deep learning techniques. We adopt an approach of converting the models into a “spectral image”. By extracting interest points and calculating three types of spectral descriptors (HKS, WKS and GISIF), we generate a three-channel input to a convolutional neural network. This CNN is trained to automatically learn features such as topology of 3D models. The results are evaluated and analyzed using the Non-Rigid Classification Benchmark SHREC 2011. Our proposal shows promising results in classification tasks compared to other methods, and also it is robust under several types of transformations.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).