Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon

Descripción del Articulo

Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossib...

Descripción completa

Detalles Bibliográficos
Autores: Moya L., Mas E., Koshimura S.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2531
Enlace del recurso:https://hdl.handle.net/20.500.12390/2531
https://doi.org/10.3390/rs12142244
Nivel de acceso:acceso abierto
Materia:Training data
Flood mapping
Machine learning
Sentinel-1 SAR data
http://purl.org/pe-repo/ocde/ford#2.07.02
id CONC_9e0378e73ab71e8878377c1793e891fc
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2531
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
title Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
spellingShingle Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
Moya L.
Training data
Flood mapping
Machine learning
Sentinel-1 SAR data
http://purl.org/pe-repo/ocde/ford#2.07.02
title_short Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
title_full Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
title_fullStr Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
title_full_unstemmed Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
title_sort Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
author Moya L.
author_facet Moya L.
Mas E.
Koshimura S.
author_role author
author2 Mas E.
Koshimura S.
author2_role author
author
dc.contributor.author.fl_str_mv Moya L.
Mas E.
Koshimura S.
dc.subject.none.fl_str_mv Training data
topic Training data
Flood mapping
Machine learning
Sentinel-1 SAR data
http://purl.org/pe-repo/ocde/ford#2.07.02
dc.subject.es_PE.fl_str_mv Flood mapping
Machine learning
Sentinel-1 SAR data
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.07.02
description Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2531
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/rs12142244
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85088636794
url https://hdl.handle.net/20.500.12390/2531
https://doi.org/10.3390/rs12142244
identifier_str_mv 2-s2.0-85088636794
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Remote Sensing
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/e2200004-bcdd-4e5c-b463-d16366dc3c61/download
https://repositorio.concytec.gob.pe/bitstreams/fede1312-988e-4591-a707-0edbc229d408/download
https://repositorio.concytec.gob.pe/bitstreams/ae200315-15c8-4b3f-ad27-720d179fc6b5/download
bitstream.checksum.fl_str_mv c19fdf58f35bdec959cb1688a3634227
60242d734553268ba280cd8f2b3352bd
12be3761910ba56cb168463d21838518
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883003392655360
spelling Publicationrp05688600rp05687600rp05690600Moya L.Mas E.Koshimura S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2531https://doi.org/10.3390/rs121422442-s2.0-85088636794Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGRemote Sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Training dataFlood mapping-1Machine learning-1Sentinel-1 SAR data-1http://purl.org/pe-repo/ocde/ford#2.07.02-1Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhooninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALLearning from the 2018 Western Japan Heavy.pdfLearning from the 2018 Western Japan Heavy.pdfapplication/pdf5943245https://repositorio.concytec.gob.pe/bitstreams/e2200004-bcdd-4e5c-b463-d16366dc3c61/downloadc19fdf58f35bdec959cb1688a3634227MD51TEXTLearning from the 2018 Western Japan Heavy.pdf.txtLearning from the 2018 Western Japan Heavy.pdf.txtExtracted texttext/plain51070https://repositorio.concytec.gob.pe/bitstreams/fede1312-988e-4591-a707-0edbc229d408/download60242d734553268ba280cd8f2b3352bdMD52THUMBNAILLearning from the 2018 Western Japan Heavy.pdf.jpgLearning from the 2018 Western Japan Heavy.pdf.jpgGenerated Thumbnailimage/jpeg5478https://repositorio.concytec.gob.pe/bitstreams/ae200315-15c8-4b3f-ad27-720d179fc6b5/download12be3761910ba56cb168463d21838518MD5320.500.12390/2531oai:repositorio.concytec.gob.pe:20.500.12390/25312025-01-14 22:00:41.283https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="97681968-444b-4fe4-864d-20ac42e9d633"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon</Title> <PublishedIn> <Publication> <Title>Remote Sensing</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.3390/rs12142244</DOI> <SCP-Number>2-s2.0-85088636794</SCP-Number> <Authors> <Author> <DisplayName>Moya L.</DisplayName> <Person id="rp05688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mas E.</DisplayName> <Person id="rp05687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Koshimura S.</DisplayName> <Person id="rp05690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Training data</Keyword> <Keyword>Flood mapping</Keyword> <Keyword>Machine learning</Keyword> <Keyword>Sentinel-1 SAR data</Keyword> <Abstract>Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).