Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon
Descripción del Articulo
Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossib...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2531 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2531 https://doi.org/10.3390/rs12142244 |
| Nivel de acceso: | acceso abierto |
| Materia: | Training data Flood mapping Machine learning Sentinel-1 SAR data http://purl.org/pe-repo/ocde/ford#2.07.02 |
| id |
CONC_9e0378e73ab71e8878377c1793e891fc |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2531 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| title |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| spellingShingle |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon Moya L. Training data Flood mapping Machine learning Sentinel-1 SAR data http://purl.org/pe-repo/ocde/ford#2.07.02 |
| title_short |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| title_full |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| title_fullStr |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| title_full_unstemmed |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| title_sort |
Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon |
| author |
Moya L. |
| author_facet |
Moya L. Mas E. Koshimura S. |
| author_role |
author |
| author2 |
Mas E. Koshimura S. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Moya L. Mas E. Koshimura S. |
| dc.subject.none.fl_str_mv |
Training data |
| topic |
Training data Flood mapping Machine learning Sentinel-1 SAR data http://purl.org/pe-repo/ocde/ford#2.07.02 |
| dc.subject.es_PE.fl_str_mv |
Flood mapping Machine learning Sentinel-1 SAR data |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.07.02 |
| description |
Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2531 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/rs12142244 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85088636794 |
| url |
https://hdl.handle.net/20.500.12390/2531 https://doi.org/10.3390/rs12142244 |
| identifier_str_mv |
2-s2.0-85088636794 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Remote Sensing |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.publisher.none.fl_str_mv |
MDPI AG |
| publisher.none.fl_str_mv |
MDPI AG |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/e2200004-bcdd-4e5c-b463-d16366dc3c61/download https://repositorio.concytec.gob.pe/bitstreams/fede1312-988e-4591-a707-0edbc229d408/download https://repositorio.concytec.gob.pe/bitstreams/ae200315-15c8-4b3f-ad27-720d179fc6b5/download |
| bitstream.checksum.fl_str_mv |
c19fdf58f35bdec959cb1688a3634227 60242d734553268ba280cd8f2b3352bd 12be3761910ba56cb168463d21838518 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883003392655360 |
| spelling |
Publicationrp05688600rp05687600rp05690600Moya L.Mas E.Koshimura S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2531https://doi.org/10.3390/rs121422442-s2.0-85088636794Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGRemote Sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Training dataFlood mapping-1Machine learning-1Sentinel-1 SAR data-1http://purl.org/pe-repo/ocde/ford#2.07.02-1Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhooninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALLearning from the 2018 Western Japan Heavy.pdfLearning from the 2018 Western Japan Heavy.pdfapplication/pdf5943245https://repositorio.concytec.gob.pe/bitstreams/e2200004-bcdd-4e5c-b463-d16366dc3c61/downloadc19fdf58f35bdec959cb1688a3634227MD51TEXTLearning from the 2018 Western Japan Heavy.pdf.txtLearning from the 2018 Western Japan Heavy.pdf.txtExtracted texttext/plain51070https://repositorio.concytec.gob.pe/bitstreams/fede1312-988e-4591-a707-0edbc229d408/download60242d734553268ba280cd8f2b3352bdMD52THUMBNAILLearning from the 2018 Western Japan Heavy.pdf.jpgLearning from the 2018 Western Japan Heavy.pdf.jpgGenerated Thumbnailimage/jpeg5478https://repositorio.concytec.gob.pe/bitstreams/ae200315-15c8-4b3f-ad27-720d179fc6b5/download12be3761910ba56cb168463d21838518MD5320.500.12390/2531oai:repositorio.concytec.gob.pe:20.500.12390/25312025-01-14 22:00:41.283https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="97681968-444b-4fe4-864d-20ac42e9d633"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis Typhoon</Title> <PublishedIn> <Publication> <Title>Remote Sensing</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.3390/rs12142244</DOI> <SCP-Number>2-s2.0-85088636794</SCP-Number> <Authors> <Author> <DisplayName>Moya L.</DisplayName> <Person id="rp05688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mas E.</DisplayName> <Person id="rp05687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Koshimura S.</DisplayName> <Person id="rp05690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Training data</Keyword> <Keyword>Flood mapping</Keyword> <Keyword>Machine learning</Keyword> <Keyword>Sentinel-1 SAR data</Keyword> <Abstract>Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time. © 2020 by the authors.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).