Vertex reconstruction of neutrino interactions using deep learning
Descripción del Articulo
Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detaile...
Autores: | , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/817 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/817 https://doi.org/10.1109/IJCNN.2017.7966131 |
Nivel de acceso: | acceso abierto |
Materia: | Vertex reconstruction Elementary particles Neutrons Semantics Algorithm engineering Error prones Learning models Measurements of Neutrino interactions Semantic features Vertex locations Deep learning |
id |
CONC_9d2c1aa9a1b823f4139806df2f7da923 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/817 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Vertex reconstruction of neutrino interactions using deep learning |
title |
Vertex reconstruction of neutrino interactions using deep learning |
spellingShingle |
Vertex reconstruction of neutrino interactions using deep learning Terwilliger A.M. Vertex reconstruction Elementary particles Neutrons Semantics Algorithm engineering Error prones Learning models Measurements of Neutrino interactions Semantic features Vertex locations Deep learning |
title_short |
Vertex reconstruction of neutrino interactions using deep learning |
title_full |
Vertex reconstruction of neutrino interactions using deep learning |
title_fullStr |
Vertex reconstruction of neutrino interactions using deep learning |
title_full_unstemmed |
Vertex reconstruction of neutrino interactions using deep learning |
title_sort |
Vertex reconstruction of neutrino interactions using deep learning |
author |
Terwilliger A.M. |
author_facet |
Terwilliger A.M. Perdue G.N. Isele D. Patton R.M. Young S.R. |
author_role |
author |
author2 |
Perdue G.N. Isele D. Patton R.M. Young S.R. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Terwilliger A.M. Perdue G.N. Isele D. Patton R.M. Young S.R. |
dc.subject.none.fl_str_mv |
Vertex reconstruction |
topic |
Vertex reconstruction Elementary particles Neutrons Semantics Algorithm engineering Error prones Learning models Measurements of Neutrino interactions Semantic features Vertex locations Deep learning |
dc.subject.es_PE.fl_str_mv |
Elementary particles Neutrons Semantics Algorithm engineering Error prones Learning models Measurements of Neutrino interactions Semantic features Vertex locations Deep learning |
description |
Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
urn:isbn:9781509061815 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/817 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/IJCNN.2017.7966131 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85031031977 |
identifier_str_mv |
urn:isbn:9781509061815 2-s2.0-85031031977 |
url |
https://hdl.handle.net/20.500.12390/817 https://doi.org/10.1109/IJCNN.2017.7966131 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883000048746496 |
spelling |
Publicationrp02099600rp00806500rp02100600rp02097600rp02098600Terwilliger A.M.Perdue G.N.Isele D.Patton R.M.Young S.R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781509061815https://hdl.handle.net/20.500.12390/817https://doi.org/10.1109/IJCNN.2017.79661312-s2.0-85031031977Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccessVertex reconstructionElementary particles-1Neutrons-1Semantics-1Algorithm engineering-1Error prones-1Learning models-1Measurements of-1Neutrino interactions-1Semantic features-1Vertex locations-1Deep learning-1Vertex reconstruction of neutrino interactions using deep learninginfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/817oai:repositorio.concytec.gob.pe:20.500.12390/8172025-09-23 14:38:48.304http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="91b4b2e6-c95c-41d6-a3bb-facad875d99a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Vertex reconstruction of neutrino interactions using deep learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the International Joint Conference on Neural Networks</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/IJCNN.2017.7966131</DOI> <SCP-Number>2-s2.0-85031031977</SCP-Number> <ISBN>urn:isbn:9781509061815</ISBN> <Authors> <Author> <DisplayName>Terwilliger A.M.</DisplayName> <Person id="rp02099" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue G.N.</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Isele D.</DisplayName> <Person id="rp02100" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Patton R.M.</DisplayName> <Person id="rp02097" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young S.R.</DisplayName> <Person id="rp02098" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Vertex reconstruction</Keyword> <Keyword>Elementary particles</Keyword> <Keyword>Neutrons</Keyword> <Keyword>Semantics</Keyword> <Keyword>Algorithm engineering</Keyword> <Keyword>Error prones</Keyword> <Keyword>Learning models</Keyword> <Keyword>Measurements of</Keyword> <Keyword>Neutrino interactions</Keyword> <Keyword>Semantic features</Keyword> <Keyword>Vertex locations</Keyword> <Keyword>Deep learning</Keyword> <Abstract>Deep learning offers new tools to improve our understanding of many important scientific problems. Neutrinos are the most abundant particles in existence and are hypothesized to explain the matter-antimatter asymmetry that dominates our universe. Definitive tests of this conjecture require a detailed understanding of neutrino interactions with a variety of nuclei. Many measurements of interest depend on vertex reconstruction – finding the origin of a neutrino interaction using data from the detector, which can be represented as images. Traditionally, this has been accomplished by utilizing methods that identify the tracks coming from the interaction. However, these methods are not ideal for interactions where an abundance of tracks and cascades occlude the vertex region. Manual algorithm engineering to handle these challenges is complicated and error prone. Deep learning extracts rich, semantic features directly from raw data, making it a promising solution to this problem. In this work, deep learning models are presented that classify the vertex location in regions meaningful to the domain scientists improving their ability to explore more complex interactions.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).