Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition
Descripción del Articulo
The first and third author acknowledge the Peruvian agencies FONDECYT and CONCYTEC for the support. The second author acknowledges the Brazilian agencies CAPES and FAPESP for the support
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2016 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1084 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1084 https://doi.org/10.1109/FUZZ-IEEE.2016.7737859 |
Nivel de acceso: | acceso abierto |
Materia: | pattern classification fuzzy set theory genetic algorithms https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
CONC_9657c91bb96ddce7288ad8da92e162ab |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1084 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
title |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
spellingShingle |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition Cardenas, EH pattern classification fuzzy set theory genetic algorithms https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
title_full |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
title_fullStr |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
title_full_unstemmed |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
title_sort |
Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition |
author |
Cardenas, EH |
author_facet |
Cardenas, EH Camargo, HA Tupac, YJ |
author_role |
author |
author2 |
Camargo, HA Tupac, YJ |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cardenas, EH Camargo, HA Tupac, YJ |
dc.subject.none.fl_str_mv |
pattern classification |
topic |
pattern classification fuzzy set theory genetic algorithms https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
fuzzy set theory genetic algorithms |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The first and third author acknowledge the Peruvian agencies FONDECYT and CONCYTEC for the support. The second author acknowledges the Brazilian agencies CAPES and FAPESP for the support |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1084 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/FUZZ-IEEE.2016.7737859 |
dc.identifier.isi.none.fl_str_mv |
392150700200 |
url |
https://hdl.handle.net/20.500.12390/1084 https://doi.org/10.1109/FUZZ-IEEE.2016.7737859 |
identifier_str_mv |
392150700200 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
publisher.none.fl_str_mv |
2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175419090173952 |
spelling |
Publicationrp03086600rp03084600rp03085600Cardenas, EHCamargo, HATupac, YJ2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/1084https://doi.org/10.1109/FUZZ-IEEE.2016.7737859392150700200The first and third author acknowledge the Peruvian agencies FONDECYT and CONCYTEC for the support. The second author acknowledges the Brazilian agencies CAPES and FAPESP for the supportIn the last years, multi-objective evolutionary algorithms have been used to learn or tune components of fuzzy systems from data. The suitability of such algorithms for this task is due to the possibility of balancing the conflicting objectives of accuracy and interpretability of the resulting model. In a previous work, a method to learn fuzzy classification rules from imbalanced datasets using multi-objective genetic algorithms and the iterative rule learning approach was proposed by the authors. In this method, the imbalanced datasets are pre-processed to be transformed to balanced datasets, and then the rules are generated and the fuzzy sets are tuned. The method has been evaluated in an experimental study considering ten different methods to pre-process the imbalanced datasets and presented competitive results with comparison to similar proposals. The genetic generation of the rules and the optimization of fuzzy sets were both based on NSGA-II. The objective of this article is to investigate whether the multi-objective algorithm used can impact the performance of the method. In this direction, the work developed here presents and analyses the results obtained by the method proposed before using MOEA/D instead of NSGA-II. The analysis demonstrate that the accuracy obtained with MOEA/D is similar to that of NSGA-II while the interpretability measures such as number of rules and number of conditions tend to be better.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concyteceng2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)info:eu-repo/semantics/openAccesspattern classificationfuzzy set theory-1genetic algorithms-1https://purl.org/pe-repo/ocde/ford#2.02.04-1Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decompositioninfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1084oai:repositorio.concytec.gob.pe:20.500.12390/10842024-05-30 15:23:40.869http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="0f9b2509-ec7e-4845-877c-2fc773729aaa"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Imbalanced Datasets in the Generation of Fuzzy Classification Systems - An Investigation using a Multiobjective Evolutionary Algorithm based on Decomposition</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1109/FUZZ-IEEE.2016.7737859</DOI> <ISI-Number>392150700200</ISI-Number> <Authors> <Author> <DisplayName>Cardenas, EH</DisplayName> <Person id="rp03086" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Camargo, HA</DisplayName> <Person id="rp03084" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tupac, YJ</DisplayName> <Person id="rp03085" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>pattern classification</Keyword> <Keyword>fuzzy set theory</Keyword> <Keyword>genetic algorithms</Keyword> <Abstract>In the last years, multi-objective evolutionary algorithms have been used to learn or tune components of fuzzy systems from data. The suitability of such algorithms for this task is due to the possibility of balancing the conflicting objectives of accuracy and interpretability of the resulting model. In a previous work, a method to learn fuzzy classification rules from imbalanced datasets using multi-objective genetic algorithms and the iterative rule learning approach was proposed by the authors. In this method, the imbalanced datasets are pre-processed to be transformed to balanced datasets, and then the rules are generated and the fuzzy sets are tuned. The method has been evaluated in an experimental study considering ten different methods to pre-process the imbalanced datasets and presented competitive results with comparison to similar proposals. The genetic generation of the rules and the optimization of fuzzy sets were both based on NSGA-II. The objective of this article is to investigate whether the multi-objective algorithm used can impact the performance of the method. In this direction, the work developed here presents and analyses the results obtained by the method proposed before using MOEA/D instead of NSGA-II. The analysis demonstrate that the accuracy obtained with MOEA/D is similar to that of NSGA-II while the interpretability measures such as number of rules and number of conditions tend to be better.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.210282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).