Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles

Descripción del Articulo

Actualmente el índice de tránsito vehicular del parque automotor está creciendo sustancialmente y con ello también los altos índices de accidentes de tránsito. Si bien muchos de dichos accidentes se deben a factores humanos, es importante considerar que estos vehículos están propensos a fallas en su...

Descripción completa

Detalles Bibliográficos
Autor: Arias Copacondori, Luis Angel
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1766
Enlace del recurso:https://hdl.handle.net/20.500.12390/1766
Nivel de acceso:acceso abierto
Materia:Fallas estructurales--Análisis
Automóviles--Mecanismos de dirección
https://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_8d3ff1b83c06b6fd95a4e24848067c2e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1766
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
title Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
spellingShingle Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
Arias Copacondori, Luis Angel
Fallas estructurales--Análisis
Automóviles--Mecanismos de dirección
Automóviles--Mecanismos de dirección
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
title_full Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
title_fullStr Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
title_full_unstemmed Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
title_sort Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles
author Arias Copacondori, Luis Angel
author_facet Arias Copacondori, Luis Angel
author_role author
dc.contributor.author.fl_str_mv Arias Copacondori, Luis Angel
dc.subject.none.fl_str_mv Fallas estructurales--Análisis
topic Fallas estructurales--Análisis
Automóviles--Mecanismos de dirección
Automóviles--Mecanismos de dirección
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Automóviles--Mecanismos de dirección
Automóviles--Mecanismos de dirección
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Actualmente el índice de tránsito vehicular del parque automotor está creciendo sustancialmente y con ello también los altos índices de accidentes de tránsito. Si bien muchos de dichos accidentes se deben a factores humanos, es importante considerar que estos vehículos están propensos a fallas en sus sistemas debido a múltiples factores como son, la falta de mantenimiento, el corto tiempo de vida de los elementos del sistema vehicular, el uso continuo, las condiciones de las carreteras, etc. Es por ello que la detección oportuna de estas fallas permitirá reducir drásticamente pérdidas de vidas humanas, costosos gastos de recambio de piezas y sistemas, daños al medio ambiente a causa de malos funcionamientos, etc. Un elemento crítico de los vehículos actuales es el del sistema de dirección asistida que permite reducir el esfuerzo del conductor para maniobras de orientación del vehículo reduciendo los impactos en el volante y garantizando una adecuada estabilidad del vehículo. En esta tesis se aborda el diseño de un sistema de diagnóstico de fallas para el sistema de dirección asistida de un vehículo de categoría M1 (categorizado por el Ministerio de Transportes) con el objetivo de diagnosticar las fallas más relevantes de este sistema. El desarrollo de la tesis, se inicia con un estudio del modelamiento matemático del sistema de dirección asistido eléctrico (EPS por sus siglas en inglés). Posteriormente, se diseña el sistema de diagnóstico basado en 2 etapas. La primera es la detección de fallas, la cual está basada en la generación de Relaciones de Redundancia Analítica. Como segunda etapa, se diseña el sistema de diagnóstico de fallas utilizando Redes Neuronales Artificiales a fin de poder reconocer los tipos de fallas de manera más robusta ante las perturbaciones. Las pruebas de validación del sistema de diagnóstico se realizan utilizando los software de ingeniería Matlab y Carsim. Con estas pruebas se valida el adecuado funcionamiento del sistema de diagnóstico de fallas propuesto en un vehículo de categoría M1. Finalmente se propone un sistema para implementación en un vehículo real utilizando la plataforma Arduino.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1766
url https://hdl.handle.net/20.500.12390/1766
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175627084660736
spelling Publicationrp04716600Arias Copacondori, Luis Angel2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1766Actualmente el índice de tránsito vehicular del parque automotor está creciendo sustancialmente y con ello también los altos índices de accidentes de tránsito. Si bien muchos de dichos accidentes se deben a factores humanos, es importante considerar que estos vehículos están propensos a fallas en sus sistemas debido a múltiples factores como son, la falta de mantenimiento, el corto tiempo de vida de los elementos del sistema vehicular, el uso continuo, las condiciones de las carreteras, etc. Es por ello que la detección oportuna de estas fallas permitirá reducir drásticamente pérdidas de vidas humanas, costosos gastos de recambio de piezas y sistemas, daños al medio ambiente a causa de malos funcionamientos, etc. Un elemento crítico de los vehículos actuales es el del sistema de dirección asistida que permite reducir el esfuerzo del conductor para maniobras de orientación del vehículo reduciendo los impactos en el volante y garantizando una adecuada estabilidad del vehículo. En esta tesis se aborda el diseño de un sistema de diagnóstico de fallas para el sistema de dirección asistida de un vehículo de categoría M1 (categorizado por el Ministerio de Transportes) con el objetivo de diagnosticar las fallas más relevantes de este sistema. El desarrollo de la tesis, se inicia con un estudio del modelamiento matemático del sistema de dirección asistido eléctrico (EPS por sus siglas en inglés). Posteriormente, se diseña el sistema de diagnóstico basado en 2 etapas. La primera es la detección de fallas, la cual está basada en la generación de Relaciones de Redundancia Analítica. Como segunda etapa, se diseña el sistema de diagnóstico de fallas utilizando Redes Neuronales Artificiales a fin de poder reconocer los tipos de fallas de manera más robusta ante las perturbaciones. Las pruebas de validación del sistema de diagnóstico se realizan utilizando los software de ingeniería Matlab y Carsim. Con estas pruebas se valida el adecuado funcionamiento del sistema de diagnóstico de fallas propuesto en un vehículo de categoría M1. Finalmente se propone un sistema para implementación en un vehículo real utilizando la plataforma Arduino.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytspaPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Fallas estructurales--AnálisisAutomóviles--Mecanismos de dirección-1Automóviles--Mecanismos de dirección-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóvilesinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en Ingeniería de Control y AutomatizaciónIngeniería de Control y AutomatizaciónPontificia Universidad Católica del Perú. Escuela de Postgrado20.500.12390/1766oai:repositorio.concytec.gob.pe:20.500.12390/17662024-05-30 15:40:03.263http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="84badc3c-df93-4c8a-9cd9-8561ae5b438c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Desarrollo de un sistema de diagnóstico de fallas en la dirección asistida eléctrica de automóviles</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>Arias Copacondori, Luis Angel</DisplayName> <Person id="rp04716" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc-nd/2.5/pe/</License> <Keyword>Fallas estructurales--Análisis</Keyword> <Keyword>Automóviles--Mecanismos de dirección</Keyword> <Keyword>Automóviles--Mecanismos de dirección</Keyword> <Abstract>Actualmente el índice de tránsito vehicular del parque automotor está creciendo sustancialmente y con ello también los altos índices de accidentes de tránsito. Si bien muchos de dichos accidentes se deben a factores humanos, es importante considerar que estos vehículos están propensos a fallas en sus sistemas debido a múltiples factores como son, la falta de mantenimiento, el corto tiempo de vida de los elementos del sistema vehicular, el uso continuo, las condiciones de las carreteras, etc. Es por ello que la detección oportuna de estas fallas permitirá reducir drásticamente pérdidas de vidas humanas, costosos gastos de recambio de piezas y sistemas, daños al medio ambiente a causa de malos funcionamientos, etc. Un elemento crítico de los vehículos actuales es el del sistema de dirección asistida que permite reducir el esfuerzo del conductor para maniobras de orientación del vehículo reduciendo los impactos en el volante y garantizando una adecuada estabilidad del vehículo. En esta tesis se aborda el diseño de un sistema de diagnóstico de fallas para el sistema de dirección asistida de un vehículo de categoría M1 (categorizado por el Ministerio de Transportes) con el objetivo de diagnosticar las fallas más relevantes de este sistema. El desarrollo de la tesis, se inicia con un estudio del modelamiento matemático del sistema de dirección asistido eléctrico (EPS por sus siglas en inglés). Posteriormente, se diseña el sistema de diagnóstico basado en 2 etapas. La primera es la detección de fallas, la cual está basada en la generación de Relaciones de Redundancia Analítica. Como segunda etapa, se diseña el sistema de diagnóstico de fallas utilizando Redes Neuronales Artificiales a fin de poder reconocer los tipos de fallas de manera más robusta ante las perturbaciones. Las pruebas de validación del sistema de diagnóstico se realizan utilizando los software de ingeniería Matlab y Carsim. Con estas pruebas se valida el adecuado funcionamiento del sistema de diagnóstico de fallas propuesto en un vehículo de categoría M1. Finalmente se propone un sistema para implementación en un vehículo real utilizando la plataforma Arduino.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).