Tsunami damage detection with remote sensing: A review

Descripción del Articulo

Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the socia...

Descripción completa

Detalles Bibliográficos
Autores: Koshimura S., Moya L., Mas E., Bai Y.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2554
Enlace del recurso:https://hdl.handle.net/20.500.12390/2554
https://doi.org/10.3390/geosciences10050177
Nivel de acceso:acceso abierto
Materia:Tsunami
Damage detection
Deep learning
Machine learning
Remote sensing
http://purl.org/pe-repo/ocde/ford#2.02.05
id CONC_8c67bfd19c0419d0b3ff4bbc695077ae
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2554
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Tsunami damage detection with remote sensing: A review
title Tsunami damage detection with remote sensing: A review
spellingShingle Tsunami damage detection with remote sensing: A review
Koshimura S.
Tsunami
Damage detection
Deep learning
Machine learning
Remote sensing
http://purl.org/pe-repo/ocde/ford#2.02.05
title_short Tsunami damage detection with remote sensing: A review
title_full Tsunami damage detection with remote sensing: A review
title_fullStr Tsunami damage detection with remote sensing: A review
title_full_unstemmed Tsunami damage detection with remote sensing: A review
title_sort Tsunami damage detection with remote sensing: A review
author Koshimura S.
author_facet Koshimura S.
Moya L.
Mas E.
Bai Y.
author_role author
author2 Moya L.
Mas E.
Bai Y.
author2_role author
author
author
dc.contributor.author.fl_str_mv Koshimura S.
Moya L.
Mas E.
Bai Y.
dc.subject.none.fl_str_mv Tsunami
topic Tsunami
Damage detection
Deep learning
Machine learning
Remote sensing
http://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.es_PE.fl_str_mv Damage detection
Deep learning
Machine learning
Remote sensing
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.05
description Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2554
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/geosciences10050177
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85085920241
url https://hdl.handle.net/20.500.12390/2554
https://doi.org/10.3390/geosciences10050177
identifier_str_mv 2-s2.0-85085920241
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Geosciences (Switzerland)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/1aabd771-b25c-4952-96fc-f79222bd1a2d/download
https://repositorio.concytec.gob.pe/bitstreams/3d9f279f-dcbf-4c0f-ab00-d2fc7dfe8fa4/download
https://repositorio.concytec.gob.pe/bitstreams/4ade0fb8-4e31-46c8-adb4-b4b51a17f5c4/download
bitstream.checksum.fl_str_mv 6fdb253d4440dec4827a10d09ff789e1
b3bb268f96b81ee9e7d82878ea855f35
aabe8bf8903ff5720b9d75884cce717b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175484606251008
spelling Publicationrp05690600rp05688600rp05687600rp06570600Koshimura S.Moya L.Mas E.Bai Y.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2554https://doi.org/10.3390/geosciences100501772-s2.0-85085920241Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGGeosciences (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/TsunamiDamage detection-1Deep learning-1Machine learning-1Remote sensing-1http://purl.org/pe-repo/ocde/ford#2.02.05-1Tsunami damage detection with remote sensing: A reviewinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALTsunami Damage Detection with Remote Sensing.pdfTsunami Damage Detection with Remote Sensing.pdfapplication/pdf25539096https://repositorio.concytec.gob.pe/bitstreams/1aabd771-b25c-4952-96fc-f79222bd1a2d/download6fdb253d4440dec4827a10d09ff789e1MD51TEXTTsunami Damage Detection with Remote Sensing.pdf.txtTsunami Damage Detection with Remote Sensing.pdf.txtExtracted texttext/plain91603https://repositorio.concytec.gob.pe/bitstreams/3d9f279f-dcbf-4c0f-ab00-d2fc7dfe8fa4/downloadb3bb268f96b81ee9e7d82878ea855f35MD52THUMBNAILTsunami Damage Detection with Remote Sensing.pdf.jpgTsunami Damage Detection with Remote Sensing.pdf.jpgGenerated Thumbnailimage/jpeg5381https://repositorio.concytec.gob.pe/bitstreams/4ade0fb8-4e31-46c8-adb4-b4b51a17f5c4/downloadaabe8bf8903ff5720b9d75884cce717bMD5320.500.12390/2554oai:repositorio.concytec.gob.pe:20.500.12390/25542025-01-15 22:00:23.212https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2e411a60-b911-4e7d-ba7f-ec99ebf472f1"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Tsunami damage detection with remote sensing: A review</Title> <PublishedIn> <Publication> <Title>Geosciences (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.3390/geosciences10050177</DOI> <SCP-Number>2-s2.0-85085920241</SCP-Number> <Authors> <Author> <DisplayName>Koshimura S.</DisplayName> <Person id="rp05690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Moya L.</DisplayName> <Person id="rp05688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mas E.</DisplayName> <Person id="rp05687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bai Y.</DisplayName> <Person id="rp06570" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Tsunami</Keyword> <Keyword>Damage detection</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Machine learning</Keyword> <Keyword>Remote sensing</Keyword> <Abstract>Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439043
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).