Tsunami damage detection with remote sensing: A review
Descripción del Articulo
Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the socia...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2554 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2554 https://doi.org/10.3390/geosciences10050177 |
Nivel de acceso: | acceso abierto |
Materia: | Tsunami Damage detection Deep learning Machine learning Remote sensing http://purl.org/pe-repo/ocde/ford#2.02.05 |
id |
CONC_8c67bfd19c0419d0b3ff4bbc695077ae |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2554 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Tsunami damage detection with remote sensing: A review |
title |
Tsunami damage detection with remote sensing: A review |
spellingShingle |
Tsunami damage detection with remote sensing: A review Koshimura S. Tsunami Damage detection Deep learning Machine learning Remote sensing http://purl.org/pe-repo/ocde/ford#2.02.05 |
title_short |
Tsunami damage detection with remote sensing: A review |
title_full |
Tsunami damage detection with remote sensing: A review |
title_fullStr |
Tsunami damage detection with remote sensing: A review |
title_full_unstemmed |
Tsunami damage detection with remote sensing: A review |
title_sort |
Tsunami damage detection with remote sensing: A review |
author |
Koshimura S. |
author_facet |
Koshimura S. Moya L. Mas E. Bai Y. |
author_role |
author |
author2 |
Moya L. Mas E. Bai Y. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Koshimura S. Moya L. Mas E. Bai Y. |
dc.subject.none.fl_str_mv |
Tsunami |
topic |
Tsunami Damage detection Deep learning Machine learning Remote sensing http://purl.org/pe-repo/ocde/ford#2.02.05 |
dc.subject.es_PE.fl_str_mv |
Damage detection Deep learning Machine learning Remote sensing |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.05 |
description |
Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2554 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/geosciences10050177 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85085920241 |
url |
https://hdl.handle.net/20.500.12390/2554 https://doi.org/10.3390/geosciences10050177 |
identifier_str_mv |
2-s2.0-85085920241 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Geosciences (Switzerland) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/1aabd771-b25c-4952-96fc-f79222bd1a2d/download https://repositorio.concytec.gob.pe/bitstreams/3d9f279f-dcbf-4c0f-ab00-d2fc7dfe8fa4/download https://repositorio.concytec.gob.pe/bitstreams/4ade0fb8-4e31-46c8-adb4-b4b51a17f5c4/download |
bitstream.checksum.fl_str_mv |
6fdb253d4440dec4827a10d09ff789e1 b3bb268f96b81ee9e7d82878ea855f35 aabe8bf8903ff5720b9d75884cce717b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175484606251008 |
spelling |
Publicationrp05690600rp05688600rp05687600rp06570600Koshimura S.Moya L.Mas E.Bai Y.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2554https://doi.org/10.3390/geosciences100501772-s2.0-85085920241Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGGeosciences (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/TsunamiDamage detection-1Deep learning-1Machine learning-1Remote sensing-1http://purl.org/pe-repo/ocde/ford#2.02.05-1Tsunami damage detection with remote sensing: A reviewinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALTsunami Damage Detection with Remote Sensing.pdfTsunami Damage Detection with Remote Sensing.pdfapplication/pdf25539096https://repositorio.concytec.gob.pe/bitstreams/1aabd771-b25c-4952-96fc-f79222bd1a2d/download6fdb253d4440dec4827a10d09ff789e1MD51TEXTTsunami Damage Detection with Remote Sensing.pdf.txtTsunami Damage Detection with Remote Sensing.pdf.txtExtracted texttext/plain91603https://repositorio.concytec.gob.pe/bitstreams/3d9f279f-dcbf-4c0f-ab00-d2fc7dfe8fa4/downloadb3bb268f96b81ee9e7d82878ea855f35MD52THUMBNAILTsunami Damage Detection with Remote Sensing.pdf.jpgTsunami Damage Detection with Remote Sensing.pdf.jpgGenerated Thumbnailimage/jpeg5381https://repositorio.concytec.gob.pe/bitstreams/4ade0fb8-4e31-46c8-adb4-b4b51a17f5c4/downloadaabe8bf8903ff5720b9d75884cce717bMD5320.500.12390/2554oai:repositorio.concytec.gob.pe:20.500.12390/25542025-01-15 22:00:23.212https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2e411a60-b911-4e7d-ba7f-ec99ebf472f1"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Tsunami damage detection with remote sensing: A review</Title> <PublishedIn> <Publication> <Title>Geosciences (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.3390/geosciences10050177</DOI> <SCP-Number>2-s2.0-85085920241</SCP-Number> <Authors> <Author> <DisplayName>Koshimura S.</DisplayName> <Person id="rp05690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Moya L.</DisplayName> <Person id="rp05688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mas E.</DisplayName> <Person id="rp05687" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bai Y.</DisplayName> <Person id="rp06570" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Tsunami</Keyword> <Keyword>Damage detection</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Machine learning</Keyword> <Keyword>Remote sensing</Keyword> <Abstract>Tsunamis are rare events compared with the other natural disasters, but once it happens, it can be extremely devastating to the coastal communities. Extensive inland penetration of tsunamis may cause the difficulties of understanding its impact in the aftermath of its generation. Therefore the social needs to technologies of detecting the wide impact of great tsunamis have been increased. Recent advances of remote sensing and technologies of image analysis meet the above needs and lead to more rapid and efficient understanding of tsunami affected areas. This paper provides a review of how remote sensing methods have developed to contribute to post-tsunami disaster response. The evaluations in the performances of the remote sensing methods are discussed according to the needs of tsunami disaster response with future perspective. ©2020 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439043 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).