A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
Descripción del Articulo
The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite imag...
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1012 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1012 https://doi.org/10.1109/FUZZ-IEEE.2018.8491634 |
Nivel de acceso: | acceso abierto |
Materia: | pattern clustering fuzzy set theory Gaussian processes image segmentation https://purl.org/pe-repo/ocde/ford#2.02.00 |
id |
CONC_887f26bb39acd2fdea3a959d6ec37f8c |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1012 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
title |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
spellingShingle |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation Mantilla, L pattern clustering fuzzy set theory Gaussian processes image segmentation https://purl.org/pe-repo/ocde/ford#2.02.00 |
title_short |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
title_full |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
title_fullStr |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
title_full_unstemmed |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
title_sort |
A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation |
author |
Mantilla, L |
author_facet |
Mantilla, L Yari, Y Meza-Lovon, G |
author_role |
author |
author2 |
Yari, Y Meza-Lovon, G |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mantilla, L Yari, Y Meza-Lovon, G |
dc.subject.none.fl_str_mv |
pattern clustering |
topic |
pattern clustering fuzzy set theory Gaussian processes image segmentation https://purl.org/pe-repo/ocde/ford#2.02.00 |
dc.subject.es_PE.fl_str_mv |
fuzzy set theory Gaussian processes image segmentation |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.00 |
description |
The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite images. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1012 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/FUZZ-IEEE.2018.8491634 |
dc.identifier.isi.none.fl_str_mv |
451248900191 |
url |
https://hdl.handle.net/20.500.12390/1012 https://doi.org/10.1109/FUZZ-IEEE.2018.8491634 |
identifier_str_mv |
451248900191 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
publisher.none.fl_str_mv |
2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175630654013440 |
spelling |
Publicationrp00934500rp01718500rp02876600Mantilla, LYari, YMeza-Lovon, G2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1012https://doi.org/10.1109/FUZZ-IEEE.2018.8491634451248900191The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite images.Satellite Image Segmentation is a task widely investigate since we can extract and analyze information of an image. In satellite image, the information of each one of the bands must be considered. We propose a new method based on the New Fuzzy Centroid Model and includes spatial information. Furthermore, we use the occurrence of each intensity value in a particular band and the Gaussian function in order to compute the degree of contribution of pixels in the neighborhood. By incorporating spatial information (global and local), we improve the clustering process and consequently, a better segmentation is obtained. This paper reports preliminary results of experiments that show that the proposed algorithm performs accurately on a real data set. For the evaluation of the algorithm, different cluster validity indexes are employed.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concyteceng2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)info:eu-repo/semantics/openAccesspattern clusteringfuzzy set theory-1Gaussian processes-1image segmentation-1https://purl.org/pe-repo/ocde/ford#2.02.00-1A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1012oai:repositorio.concytec.gob.pe:20.500.12390/10122024-05-30 15:23:33.777http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="86a977e7-82ad-4e9f-bab2-e81e2216f770"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1109/FUZZ-IEEE.2018.8491634</DOI> <ISI-Number>451248900191</ISI-Number> <Authors> <Author> <DisplayName>Mantilla, L</DisplayName> <Person id="rp00934" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yari, Y</DisplayName> <Person id="rp01718" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Meza-Lovon, G</DisplayName> <Person id="rp02876" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>pattern clustering</Keyword> <Keyword>fuzzy set theory</Keyword> <Keyword>Gaussian processes</Keyword> <Keyword>image segmentation</Keyword> <Abstract>Satellite Image Segmentation is a task widely investigate since we can extract and analyze information of an image. In satellite image, the information of each one of the bands must be considered. We propose a new method based on the New Fuzzy Centroid Model and includes spatial information. Furthermore, we use the occurrence of each intensity value in a particular band and the Gaussian function in order to compute the degree of contribution of pixels in the neighborhood. By incorporating spatial information (global and local), we improve the clustering process and consequently, a better segmentation is obtained. This paper reports preliminary results of experiments that show that the proposed algorithm performs accurately on a real data set. For the evaluation of the algorithm, different cluster validity indexes are employed.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).