A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation

Descripción del Articulo

The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite imag...

Descripción completa

Detalles Bibliográficos
Autores: Mantilla, L, Yari, Y, Meza-Lovon, G
Formato: objeto de conferencia
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1012
Enlace del recurso:https://hdl.handle.net/20.500.12390/1012
https://doi.org/10.1109/FUZZ-IEEE.2018.8491634
Nivel de acceso:acceso abierto
Materia:pattern clustering
fuzzy set theory
Gaussian processes
image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
id CONC_887f26bb39acd2fdea3a959d6ec37f8c
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1012
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
title A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
spellingShingle A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
Mantilla, L
pattern clustering
fuzzy set theory
Gaussian processes
image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
title_short A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
title_full A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
title_fullStr A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
title_full_unstemmed A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
title_sort A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation
author Mantilla, L
author_facet Mantilla, L
Yari, Y
Meza-Lovon, G
author_role author
author2 Yari, Y
Meza-Lovon, G
author2_role author
author
dc.contributor.author.fl_str_mv Mantilla, L
Yari, Y
Meza-Lovon, G
dc.subject.none.fl_str_mv pattern clustering
topic pattern clustering
fuzzy set theory
Gaussian processes
image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
dc.subject.es_PE.fl_str_mv fuzzy set theory
Gaussian processes
image segmentation
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.00
description The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite images.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1012
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/FUZZ-IEEE.2018.8491634
dc.identifier.isi.none.fl_str_mv 451248900191
url https://hdl.handle.net/20.500.12390/1012
https://doi.org/10.1109/FUZZ-IEEE.2018.8491634
identifier_str_mv 451248900191
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
publisher.none.fl_str_mv 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175630654013440
spelling Publicationrp00934500rp01718500rp02876600Mantilla, LYari, YMeza-Lovon, G2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1012https://doi.org/10.1109/FUZZ-IEEE.2018.8491634451248900191The authors would like to thank Consejo Nacional de Ciencia, Tecnolog´ıa e Innovacion Tecnol ´ ogica ´ , Peru (CONCYTEC), Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico ´ , Peru (FONDECYT) for the financial support; and Autoridad Nacional del Agua, Peru (ANA) for providing the satellite images.Satellite Image Segmentation is a task widely investigate since we can extract and analyze information of an image. In satellite image, the information of each one of the bands must be considered. We propose a new method based on the New Fuzzy Centroid Model and includes spatial information. Furthermore, we use the occurrence of each intensity value in a particular band and the Gaussian function in order to compute the degree of contribution of pixels in the neighborhood. By incorporating spatial information (global and local), we improve the clustering process and consequently, a better segmentation is obtained. This paper reports preliminary results of experiments that show that the proposed algorithm performs accurately on a real data set. For the evaluation of the algorithm, different cluster validity indexes are employed.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concyteceng2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)info:eu-repo/semantics/openAccesspattern clusteringfuzzy set theory-1Gaussian processes-1image segmentation-1https://purl.org/pe-repo/ocde/ford#2.02.00-1A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1012oai:repositorio.concytec.gob.pe:20.500.12390/10122024-05-30 15:23:33.777http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="86a977e7-82ad-4e9f-bab2-e81e2216f770"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A Novel Fuzzy Probabilistic Clustering Algorithm for Satellite Image Segmentation</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1109/FUZZ-IEEE.2018.8491634</DOI> <ISI-Number>451248900191</ISI-Number> <Authors> <Author> <DisplayName>Mantilla, L</DisplayName> <Person id="rp00934" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yari, Y</DisplayName> <Person id="rp01718" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Meza-Lovon, G</DisplayName> <Person id="rp02876" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>pattern clustering</Keyword> <Keyword>fuzzy set theory</Keyword> <Keyword>Gaussian processes</Keyword> <Keyword>image segmentation</Keyword> <Abstract>Satellite Image Segmentation is a task widely investigate since we can extract and analyze information of an image. In satellite image, the information of each one of the bands must be considered. We propose a new method based on the New Fuzzy Centroid Model and includes spatial information. Furthermore, we use the occurrence of each intensity value in a particular band and the Gaussian function in order to compute the degree of contribution of pixels in the neighborhood. By incorporating spatial information (global and local), we improve the clustering process and consequently, a better segmentation is obtained. This paper reports preliminary results of experiments that show that the proposed algorithm performs accurately on a real data set. For the evaluation of the algorithm, different cluster validity indexes are employed.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).