Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle
Descripción del Articulo
Ocean pollution and contamination of the water are serious problems because of its rapid increase and spread, having a negative effect on people, animals and the environment. Due to this, new technologies to monitor and measure environmental parameters are being developed. Remotely Operated Underwat...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1777 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1777 |
Nivel de acceso: | acceso abierto |
Materia: | Vehículos--Control automático Submarinos--Control automático https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
CONC_884abc51a34b73812f58593f083349c5 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1777 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
title |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
spellingShingle |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle Rojas Mendoza, Jorge Enrique Vehículos--Control automático Submarinos--Control automático https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
title_full |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
title_fullStr |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
title_full_unstemmed |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
title_sort |
Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle |
author |
Rojas Mendoza, Jorge Enrique |
author_facet |
Rojas Mendoza, Jorge Enrique |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rojas Mendoza, Jorge Enrique |
dc.subject.none.fl_str_mv |
Vehículos--Control automático |
topic |
Vehículos--Control automático Submarinos--Control automático https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Submarinos--Control automático |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
Ocean pollution and contamination of the water are serious problems because of its rapid increase and spread, having a negative effect on people, animals and the environment. Due to this, new technologies to monitor and measure environmental parameters are being developed. Remotely Operated Underwater Vehicles (ROVs) have become a commonly used robotic platform in oceanographic monitoring and analysis. The ROVBWSTI, designed by Fraunhofer IOSB-AST Institute, is an underwater modular vehicle capable of fulfilling numerous tasks, especially in the area of environmental sensoring. The motion of the ROV is commanded through a joypad controller, and functional requirements of autonomy are not implemented yet. Motivated by this fact, this master thesis focuses on the modelling of the dynamics of the remotely operated vehicle, considering its motion, existing ocean currents, effects of gravitation and buoyancy. Moreover, the concrete effect of the thrusters on the ROV is analysed and identified. Furthermore, the detailed identification of the dynamic and hydrodynamic parameters required in the model is considered, based on empirical estimations, computational methods and experimental tests. The obtained approach is simulated and optimized, using real motion trials as a reference. After the successful modelling, the design of an essential control system that includes set-point regulation and waypoint tracking is performed and simulated. As a result, it obtains an accurate dynamic model of the remotely operated vehicle that was successfully simulated and compared with real motion tests. On the other hand, the proposed control system applied to the model adequately achieves its purpose of regulation and way point tracking that allows the autonomy of the vehicle. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1777 |
url |
https://hdl.handle.net/20.500.12390/1777 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175558829703168 |
spelling |
Publicationrp04729600Rojas Mendoza, Jorge Enrique2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1777Ocean pollution and contamination of the water are serious problems because of its rapid increase and spread, having a negative effect on people, animals and the environment. Due to this, new technologies to monitor and measure environmental parameters are being developed. Remotely Operated Underwater Vehicles (ROVs) have become a commonly used robotic platform in oceanographic monitoring and analysis. The ROVBWSTI, designed by Fraunhofer IOSB-AST Institute, is an underwater modular vehicle capable of fulfilling numerous tasks, especially in the area of environmental sensoring. The motion of the ROV is commanded through a joypad controller, and functional requirements of autonomy are not implemented yet. Motivated by this fact, this master thesis focuses on the modelling of the dynamics of the remotely operated vehicle, considering its motion, existing ocean currents, effects of gravitation and buoyancy. Moreover, the concrete effect of the thrusters on the ROV is analysed and identified. Furthermore, the detailed identification of the dynamic and hydrodynamic parameters required in the model is considered, based on empirical estimations, computational methods and experimental tests. The obtained approach is simulated and optimized, using real motion trials as a reference. After the successful modelling, the design of an essential control system that includes set-point regulation and waypoint tracking is performed and simulated. As a result, it obtains an accurate dynamic model of the remotely operated vehicle that was successfully simulated and compared with real motion tests. On the other hand, the proposed control system applied to the model adequately achieves its purpose of regulation and way point tracking that allows the autonomy of the vehicle.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengPontificia Universidad Católica del Perúinfo:eu-repo/semantics/openAccessVehículos--Control automáticoSubmarinos--Control automático-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicleinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en Ingeniería de Control y AutomatizaciónIngeniería de Control y AutomatizaciónPontificia Universidad Católica del Perú. Escuela de Postgrado20.500.12390/1777oai:repositorio.concytec.gob.pe:20.500.12390/17772024-05-30 15:40:11.372http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="5c6ba1c1-96a2-452d-922a-02a41669aa6c"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Modelling and essential control of an oceanographic monitoring remotely operated underwater vehicle</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>Rojas Mendoza, Jorge Enrique</DisplayName> <Person id="rp04729" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Pontificia Universidad Católica del Perú</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Vehículos--Control automático</Keyword> <Keyword>Submarinos--Control automático</Keyword> <Abstract>Ocean pollution and contamination of the water are serious problems because of its rapid increase and spread, having a negative effect on people, animals and the environment. Due to this, new technologies to monitor and measure environmental parameters are being developed. Remotely Operated Underwater Vehicles (ROVs) have become a commonly used robotic platform in oceanographic monitoring and analysis. The ROVBWSTI, designed by Fraunhofer IOSB-AST Institute, is an underwater modular vehicle capable of fulfilling numerous tasks, especially in the area of environmental sensoring. The motion of the ROV is commanded through a joypad controller, and functional requirements of autonomy are not implemented yet. Motivated by this fact, this master thesis focuses on the modelling of the dynamics of the remotely operated vehicle, considering its motion, existing ocean currents, effects of gravitation and buoyancy. Moreover, the concrete effect of the thrusters on the ROV is analysed and identified. Furthermore, the detailed identification of the dynamic and hydrodynamic parameters required in the model is considered, based on empirical estimations, computational methods and experimental tests. The obtained approach is simulated and optimized, using real motion trials as a reference. After the successful modelling, the design of an essential control system that includes set-point regulation and waypoint tracking is performed and simulated. As a result, it obtains an accurate dynamic model of the remotely operated vehicle that was successfully simulated and compared with real motion tests. On the other hand, the proposed control system applied to the model adequately achieves its purpose of regulation and way point tracking that allows the autonomy of the vehicle.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).