Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon

Descripción del Articulo

This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models w...

Descripción completa

Detalles Bibliográficos
Autores: Solano-Villarreal E., Valdivia W., Pearcy M., Linard C., Pasapera-Gonzales J., Moreno-Gutierrez D., Lejeune P., Llanos-Cuentas A., Speybroeck N., Hayette M.-P., Rosas-Aguirre A.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2669
Enlace del recurso:https://hdl.handle.net/20.500.12390/2669
https://doi.org/10.1038/s41598-019-51564-4
Nivel de acceso:acceso abierto
Materia:satellite imagery
biological model
environment
geography
human
incidencemalaria falciparum
Peru
physiology
Plasmodium falciparum
regression analysis
risk assessment
risk factor
http://purl.org/pe-repo/ocde/ford#1.06.15
Descripción
Sumario:This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 people) and very-high-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced villages of Loreto department, between 2010–2017 as other parts in the article (graphs, tables, and texts). Predictors were cumulative annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), shortest distance to rivers, time to populated villages, and population density. BRT models built with predictor data of a given year efficiently discriminated the malaria risk for that year in villages (area under the ROC curve (AUC) > 0.80), and most models also effectively predicted malaria risk in the following year. Cumulative rainfall, population density and time to populated villages were consistently the top three predictors for both P. vivax and P. falciparum incidence. Maps created using the BRT models characterize the spatial distribution of the malaria incidence in Loreto and should contribute to malaria-related decision making in the area. © 2019, The Author(s).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).