How the initiating ribosome copes with ppGpp to translate mRNAs
Descripción del Articulo
During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthes...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2638 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2638 https://doi.org/10.1371/journal.pbio.3000593 |
Nivel de acceso: | acceso abierto |
Materia: | General Neuroscience General Agricultural and Biological Sciences General Immunology and Microbiology http://purl.org/pe-repo/ocde/ford#3.04.03 |
id |
CONC_81dedd03910924e14b00ef8e772bdf5e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2638 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
How the initiating ribosome copes with ppGpp to translate mRNAs |
title |
How the initiating ribosome copes with ppGpp to translate mRNAs |
spellingShingle |
How the initiating ribosome copes with ppGpp to translate mRNAs Vinogradova D.S. General Neuroscience General Agricultural and Biological Sciences General Immunology and Microbiology http://purl.org/pe-repo/ocde/ford#3.04.03 |
title_short |
How the initiating ribosome copes with ppGpp to translate mRNAs |
title_full |
How the initiating ribosome copes with ppGpp to translate mRNAs |
title_fullStr |
How the initiating ribosome copes with ppGpp to translate mRNAs |
title_full_unstemmed |
How the initiating ribosome copes with ppGpp to translate mRNAs |
title_sort |
How the initiating ribosome copes with ppGpp to translate mRNAs |
author |
Vinogradova D.S. |
author_facet |
Vinogradova D.S. Zegarra V. Maksimova E. Nakamoto J.A. Kasatsky P. Paleskava A. Konevega A.L. Milón P. |
author_role |
author |
author2 |
Zegarra V. Maksimova E. Nakamoto J.A. Kasatsky P. Paleskava A. Konevega A.L. Milón P. |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Vinogradova D.S. Zegarra V. Maksimova E. Nakamoto J.A. Kasatsky P. Paleskava A. Konevega A.L. Milón P. |
dc.subject.none.fl_str_mv |
General Neuroscience |
topic |
General Neuroscience General Agricultural and Biological Sciences General Immunology and Microbiology http://purl.org/pe-repo/ocde/ford#3.04.03 |
dc.subject.es_PE.fl_str_mv |
General Agricultural and Biological Sciences General Immunology and Microbiology |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#3.04.03 |
description |
During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection. © 2020 Vinogradova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2638 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1371/journal.pbio.3000593 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85078947441 |
url |
https://hdl.handle.net/20.500.12390/2638 https://doi.org/10.1371/journal.pbio.3000593 |
identifier_str_mv |
2-s2.0-85078947441 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
PLoS Biology |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/a0fb453a-d20c-4843-ba9b-c5857242a806/download https://repositorio.concytec.gob.pe/bitstreams/99cd93b2-e8e8-469c-bb81-377c7adf7e36/download https://repositorio.concytec.gob.pe/bitstreams/147efd98-0aa0-4131-9ad5-d570c81e5ceb/download |
bitstream.checksum.fl_str_mv |
de59eb65d0c8b600c3a06be89a24499b 3097c2e3f130e0a189139bcf3538452b 7c11313162e59c44c9f90f26ded2dbe2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175674863026176 |
spelling |
Publicationrp05842600rp06808600rp06809600rp06807600rp06810600rp05845600rp05843600rp05844600Vinogradova D.S.Zegarra V.Maksimova E.Nakamoto J.A.Kasatsky P.Paleskava A.Konevega A.L.Milón P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2638https://doi.org/10.1371/journal.pbio.30005932-s2.0-85078947441During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection. © 2020 Vinogradova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengPublic Library of SciencePLoS Biologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/General NeuroscienceGeneral Agricultural and Biological Sciences-1General Immunology and Microbiology-1http://purl.org/pe-repo/ocde/ford#3.04.03-1How the initiating ribosome copes with ppGpp to translate mRNAsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALHow the initiating ribosome copes with ppGpp to translate mRNAs.pdfHow the initiating ribosome copes with ppGpp to translate mRNAs.pdfapplication/pdf3308315https://repositorio.concytec.gob.pe/bitstreams/a0fb453a-d20c-4843-ba9b-c5857242a806/downloadde59eb65d0c8b600c3a06be89a24499bMD51TEXTHow the initiating ribosome copes with ppGpp to translate mRNAs.pdf.txtHow the initiating ribosome copes with ppGpp to translate mRNAs.pdf.txtExtracted texttext/plain92566https://repositorio.concytec.gob.pe/bitstreams/99cd93b2-e8e8-469c-bb81-377c7adf7e36/download3097c2e3f130e0a189139bcf3538452bMD52THUMBNAILHow the initiating ribosome copes with ppGpp to translate mRNAs.pdf.jpgHow the initiating ribosome copes with ppGpp to translate mRNAs.pdf.jpgGenerated Thumbnailimage/jpeg5820https://repositorio.concytec.gob.pe/bitstreams/147efd98-0aa0-4131-9ad5-d570c81e5ceb/download7c11313162e59c44c9f90f26ded2dbe2MD5320.500.12390/2638oai:repositorio.concytec.gob.pe:20.500.12390/26382025-01-20 22:00:34.418https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="a1279a6d-85ec-45a6-937a-911686337d50"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>How the initiating ribosome copes with ppGpp to translate mRNAs</Title> <PublishedIn> <Publication> <Title>PLoS Biology</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1371/journal.pbio.3000593</DOI> <SCP-Number>2-s2.0-85078947441</SCP-Number> <Authors> <Author> <DisplayName>Vinogradova D.S.</DisplayName> <Person id="rp05842" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zegarra V.</DisplayName> <Person id="rp06808" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Maksimova E.</DisplayName> <Person id="rp06809" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nakamoto J.A.</DisplayName> <Person id="rp06807" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kasatsky P.</DisplayName> <Person id="rp06810" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Paleskava A.</DisplayName> <Person id="rp05845" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Konevega A.L.</DisplayName> <Person id="rp05843" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Milón P.</DisplayName> <Person id="rp05844" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Public Library of Science</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>General Neuroscience</Keyword> <Keyword>General Agricultural and Biological Sciences</Keyword> <Keyword>General Immunology and Microbiology</Keyword> <Abstract>During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection. © 2020 Vinogradova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).