A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients

Descripción del Articulo

This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of...

Descripción completa

Detalles Bibliográficos
Autores: Achanccaray D., Acuña K., Carranza E., Andreu-Perez J.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/504
Enlace del recurso:https://hdl.handle.net/20.500.12390/504
https://doi.org/10.1109/FUZZ-IEEE.2017.8015726
Nivel de acceso:acceso abierto
Materia:Neuromuscular rehabilitation
Brain
Fuzzy inference
Fuzzy neural networks
Fuzzy systems
Interfaces (computer)
Medical computing
https://purl.org/pe-repo/ocde/ford#3.04.02
id CONC_807963d057845a12ebabae38d047a49d
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/504
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
title A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
spellingShingle A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
Achanccaray D.
Neuromuscular rehabilitation
Brain
Fuzzy inference
Fuzzy neural networks
Fuzzy systems
Interfaces (computer)
Medical computing
https://purl.org/pe-repo/ocde/ford#3.04.02
title_short A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
title_full A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
title_fullStr A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
title_full_unstemmed A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
title_sort A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
author Achanccaray D.
author_facet Achanccaray D.
Acuña K.
Carranza E.
Andreu-Perez J.
author_role author
author2 Acuña K.
Carranza E.
Andreu-Perez J.
author2_role author
author
author
dc.contributor.author.fl_str_mv Achanccaray D.
Acuña K.
Carranza E.
Andreu-Perez J.
dc.subject.none.fl_str_mv Neuromuscular rehabilitation
topic Neuromuscular rehabilitation
Brain
Fuzzy inference
Fuzzy neural networks
Fuzzy systems
Interfaces (computer)
Medical computing
https://purl.org/pe-repo/ocde/ford#3.04.02
dc.subject.es_PE.fl_str_mv Brain
Fuzzy inference
Fuzzy neural networks
Fuzzy systems
Interfaces (computer)
Medical computing
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.04.02
description This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv urn:isbn:9781509060344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/504
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/FUZZ-IEEE.2017.8015726
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85030179566
identifier_str_mv urn:isbn:9781509060344
2-s2.0-85030179566
url https://hdl.handle.net/20.500.12390/504
https://doi.org/10.1109/FUZZ-IEEE.2017.8015726
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv IEEE International Conference on Fuzzy Systems
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175402121068544
spelling Publicationrp00657600rp00658600rp00655600rp00656600Achanccaray D.Acuña K.Carranza E.Andreu-Perez J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781509060344https://hdl.handle.net/20.500.12390/504https://doi.org/10.1109/FUZZ-IEEE.2017.80157262-s2.0-85030179566This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.IEEE International Conference on Fuzzy Systemsinfo:eu-repo/semantics/openAccessNeuromuscular rehabilitationBrain-1Fuzzy inference-1Fuzzy neural networks-1Fuzzy systems-1Interfaces (computer)-1Medical computing-1https://purl.org/pe-repo/ocde/ford#3.04.02-1A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patientsinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/504oai:repositorio.concytec.gob.pe:20.500.12390/5042024-05-30 15:57:40.505http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="06cb7d8d-ebe1-4291-a32b-d6c0dfabaf14"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients</Title> <PublishedIn> <Publication> <Title>IEEE International Conference on Fuzzy Systems</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/FUZZ-IEEE.2017.8015726</DOI> <SCP-Number>2-s2.0-85030179566</SCP-Number> <ISBN>urn:isbn:9781509060344</ISBN> <Authors> <Author> <DisplayName>Achanccaray D.</DisplayName> <Person id="rp00657" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Acuña K.</DisplayName> <Person id="rp00658" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carranza E.</DisplayName> <Person id="rp00655" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Andreu-Perez J.</DisplayName> <Person id="rp00656" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Neuromuscular rehabilitation</Keyword> <Keyword>Brain</Keyword> <Keyword>Fuzzy inference</Keyword> <Keyword>Fuzzy neural networks</Keyword> <Keyword>Fuzzy systems</Keyword> <Keyword>Interfaces (computer)</Keyword> <Keyword>Medical computing</Keyword> <Abstract>This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.441044
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).