A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients
Descripción del Articulo
This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of...
Autores: | , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/504 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/504 https://doi.org/10.1109/FUZZ-IEEE.2017.8015726 |
Nivel de acceso: | acceso abierto |
Materia: | Neuromuscular rehabilitation Brain Fuzzy inference Fuzzy neural networks Fuzzy systems Interfaces (computer) Medical computing https://purl.org/pe-repo/ocde/ford#3.04.02 |
id |
CONC_807963d057845a12ebabae38d047a49d |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/504 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
title |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
spellingShingle |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients Achanccaray D. Neuromuscular rehabilitation Brain Fuzzy inference Fuzzy neural networks Fuzzy systems Interfaces (computer) Medical computing https://purl.org/pe-repo/ocde/ford#3.04.02 |
title_short |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
title_full |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
title_fullStr |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
title_full_unstemmed |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
title_sort |
A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients |
author |
Achanccaray D. |
author_facet |
Achanccaray D. Acuña K. Carranza E. Andreu-Perez J. |
author_role |
author |
author2 |
Acuña K. Carranza E. Andreu-Perez J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Achanccaray D. Acuña K. Carranza E. Andreu-Perez J. |
dc.subject.none.fl_str_mv |
Neuromuscular rehabilitation |
topic |
Neuromuscular rehabilitation Brain Fuzzy inference Fuzzy neural networks Fuzzy systems Interfaces (computer) Medical computing https://purl.org/pe-repo/ocde/ford#3.04.02 |
dc.subject.es_PE.fl_str_mv |
Brain Fuzzy inference Fuzzy neural networks Fuzzy systems Interfaces (computer) Medical computing |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.04.02 |
description |
This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
urn:isbn:9781509060344 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/504 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/FUZZ-IEEE.2017.8015726 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85030179566 |
identifier_str_mv |
urn:isbn:9781509060344 2-s2.0-85030179566 |
url |
https://hdl.handle.net/20.500.12390/504 https://doi.org/10.1109/FUZZ-IEEE.2017.8015726 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
IEEE International Conference on Fuzzy Systems |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175402121068544 |
spelling |
Publicationrp00657600rp00658600rp00655600rp00656600Achanccaray D.Acuña K.Carranza E.Andreu-Perez J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017urn:isbn:9781509060344https://hdl.handle.net/20.500.12390/504https://doi.org/10.1109/FUZZ-IEEE.2017.80157262-s2.0-85030179566This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.IEEE International Conference on Fuzzy Systemsinfo:eu-repo/semantics/openAccessNeuromuscular rehabilitationBrain-1Fuzzy inference-1Fuzzy neural networks-1Fuzzy systems-1Interfaces (computer)-1Medical computing-1https://purl.org/pe-repo/ocde/ford#3.04.02-1A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patientsinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/504oai:repositorio.concytec.gob.pe:20.500.12390/5042024-05-30 15:57:40.505http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="06cb7d8d-ebe1-4291-a32b-d6c0dfabaf14"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A virtual reality and brain computer interface system for upper limb rehabilitation of post stroke patients</Title> <PublishedIn> <Publication> <Title>IEEE International Conference on Fuzzy Systems</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/FUZZ-IEEE.2017.8015726</DOI> <SCP-Number>2-s2.0-85030179566</SCP-Number> <ISBN>urn:isbn:9781509060344</ISBN> <Authors> <Author> <DisplayName>Achanccaray D.</DisplayName> <Person id="rp00657" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Acuña K.</DisplayName> <Person id="rp00658" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carranza E.</DisplayName> <Person id="rp00655" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Andreu-Perez J.</DisplayName> <Person id="rp00656" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Neuromuscular rehabilitation</Keyword> <Keyword>Brain</Keyword> <Keyword>Fuzzy inference</Keyword> <Keyword>Fuzzy neural networks</Keyword> <Keyword>Fuzzy systems</Keyword> <Keyword>Interfaces (computer)</Keyword> <Keyword>Medical computing</Keyword> <Abstract>This work presents a brain computer interface (BCI) framework for upper limb rehabilitation of post stroke patients, combining BCI and virtual reality (VR) technology; a VR feedback is shown to the participants to achieve a greater activation of certain brain regions involved with the performing of upper limb motor task. This system uses an adaptive neuro-fuzzy inference system (ANFIS) classifier to discriminate between a motor task and rest condition, the first one classifies between extension and rest conditions; and the second one classifies between flexion and rest conditions. In the training stage, eight healthy subjects participated in the sessions, the best accuracies are 99.3% and 88.9%, as a result of cross-validation. Meanwhile, the best accuracy in online test is 89%. The methodology here presented can be straightforwardly employed as a rehabilitation system for brain repair in individuals with neurological diseases or brain injury.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.441044 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).