Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution

Descripción del Articulo

Recently, the number of satellite imaging sensors deployed in space has experienced a considerable increase, but most of these sensors provide low spatial resolution images, and only a small proportion contribute with images at higher resolutions. This work proposes an alternative to improve the spa...

Descripción completa

Detalles Bibliográficos
Autores: Pineda F., Ayma V., Aduviri R., Beltran C.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2601
Enlace del recurso:https://hdl.handle.net/20.500.12390/2601
https://doi.org/10.1007/978-3-030-46140-9_27
Nivel de acceso:acceso abierto
Materia:Super Resolution
Landsat-8
Sentinel-2
SR-GAN
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_749e3d663c51e326bc1b1ec73522b11e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2601
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
title Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
spellingShingle Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
Pineda F.
Super Resolution
Landsat-8
Sentinel-2
SR-GAN
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
title_full Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
title_fullStr Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
title_full_unstemmed Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
title_sort Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution
author Pineda F.
author_facet Pineda F.
Ayma V.
Aduviri R.
Beltran C.
author_role author
author2 Ayma V.
Aduviri R.
Beltran C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Pineda F.
Ayma V.
Aduviri R.
Beltran C.
dc.subject.none.fl_str_mv Super Resolution
topic Super Resolution
Landsat-8
Sentinel-2
SR-GAN
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Landsat-8
Sentinel-2
SR-GAN
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Recently, the number of satellite imaging sensors deployed in space has experienced a considerable increase, but most of these sensors provide low spatial resolution images, and only a small proportion contribute with images at higher resolutions. This work proposes an alternative to improve the spatial resolution of Landsat-8 images to the reference of Sentinel-2 images, by applying a Super Resolution (SR) approach based on the use of Generative Adversarial Network (GAN) models for image processing, as an alternative to traditional methods to achieve higher resolution images, hence, remote sensing applications could take advantage of this new information and improve its outcomes. We used two datasets to train and validate our approach, the first composed by images from the DIV2K open access dataset and the second by images from Sentinel-2 satellite. The experimental results are based on the comparison of the similarity between the Landsat-8 images obtained by the super resolution processing by our approach (for both datasets), against its corresponding reference from Sentinel-2 satellite image, computing the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity (SSIM) as metrics for this purpose. In addition, we present a visual report in order to compare the performance of each trained model, analysis that shows interesting improvements of the resolution of Landsat-8 satellite images. © Springer Nature Switzerland AG 2020.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2601
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-46140-9_27
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85084819739
url https://hdl.handle.net/20.500.12390/2601
https://doi.org/10.1007/978-3-030-46140-9_27
identifier_str_mv 2-s2.0-85084819739
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Communications in Computer and Information Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883068550119424
spelling Publicationrp06441600rp06439600rp06686600rp06440600Pineda F.Ayma V.Aduviri R.Beltran C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2601https://doi.org/10.1007/978-3-030-46140-9_272-s2.0-85084819739Recently, the number of satellite imaging sensors deployed in space has experienced a considerable increase, but most of these sensors provide low spatial resolution images, and only a small proportion contribute with images at higher resolutions. This work proposes an alternative to improve the spatial resolution of Landsat-8 images to the reference of Sentinel-2 images, by applying a Super Resolution (SR) approach based on the use of Generative Adversarial Network (GAN) models for image processing, as an alternative to traditional methods to achieve higher resolution images, hence, remote sensing applications could take advantage of this new information and improve its outcomes. We used two datasets to train and validate our approach, the first composed by images from the DIV2K open access dataset and the second by images from Sentinel-2 satellite. The experimental results are based on the comparison of the similarity between the Landsat-8 images obtained by the super resolution processing by our approach (for both datasets), against its corresponding reference from Sentinel-2 satellite image, computing the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity (SSIM) as metrics for this purpose. In addition, we present a visual report in order to compare the performance of each trained model, analysis that shows interesting improvements of the resolution of Landsat-8 satellite images. © Springer Nature Switzerland AG 2020.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessSuper ResolutionLandsat-8-1Sentinel-2-1SR-GAN-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolutioninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2601oai:repositorio.concytec.gob.pe:20.500.12390/26012024-05-30 16:09:44.177http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="29dc34ae-4eb5-4911-b373-7ae280864124"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-46140-9_27</DOI> <SCP-Number>2-s2.0-85084819739</SCP-Number> <Authors> <Author> <DisplayName>Pineda F.</DisplayName> <Person id="rp06441" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ayma V.</DisplayName> <Person id="rp06439" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Aduviri R.</DisplayName> <Person id="rp06686" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Beltran C.</DisplayName> <Person id="rp06440" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Super Resolution</Keyword> <Keyword>Landsat-8</Keyword> <Keyword>Sentinel-2</Keyword> <Keyword>SR-GAN</Keyword> <Abstract>Recently, the number of satellite imaging sensors deployed in space has experienced a considerable increase, but most of these sensors provide low spatial resolution images, and only a small proportion contribute with images at higher resolutions. This work proposes an alternative to improve the spatial resolution of Landsat-8 images to the reference of Sentinel-2 images, by applying a Super Resolution (SR) approach based on the use of Generative Adversarial Network (GAN) models for image processing, as an alternative to traditional methods to achieve higher resolution images, hence, remote sensing applications could take advantage of this new information and improve its outcomes. We used two datasets to train and validate our approach, the first composed by images from the DIV2K open access dataset and the second by images from Sentinel-2 satellite. The experimental results are based on the comparison of the similarity between the Landsat-8 images obtained by the super resolution processing by our approach (for both datasets), against its corresponding reference from Sentinel-2 satellite image, computing the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity (SSIM) as metrics for this purpose. In addition, we present a visual report in order to compare the performance of each trained model, analysis that shows interesting improvements of the resolution of Landsat-8 satellite images. © Springer Nature Switzerland AG 2020.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.934021
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).