Finite-Expansivity and N-Shadowing
Descripción del Articulo
We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really st...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2427 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2427 https://doi.org/10.1007/s00574-021-00253-w |
| Nivel de acceso: | acceso abierto |
| Materia: | N-shadowing Homeomorphism http://purl.org/pe-repo/ocde/ford#1.01.01 |
| id |
CONC_735535d5cd3a734ee7c1e7f3c618d280 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2427 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp05888600rp06024600rp05889600rp05887600Carrasco-Olivera D.Lee K.Morales C.A.Villavicencio H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2427https://doi.org/10.1007/s00574-021-00253-w2-s2.0-85103348351We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer Science and Business Media Deutschland GmbHBulletin of the Brazilian Mathematical Societyinfo:eu-repo/semantics/openAccessN-shadowingHomeomorphism-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Finite-Expansivity and N-Shadowinginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2427oai:repositorio.concytec.gob.pe:20.500.12390/24272024-05-30 16:08:06.705http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f83257fe-1144-446a-9cc5-948e7e49e5cc"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Finite-Expansivity and N-Shadowing</Title> <PublishedIn> <Publication> <Title>Bulletin of the Brazilian Mathematical Society</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1007/s00574-021-00253-w</DOI> <SCP-Number>2-s2.0-85103348351</SCP-Number> <Authors> <Author> <DisplayName>Carrasco-Olivera D.</DisplayName> <Person id="rp05888" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lee K.</DisplayName> <Person id="rp06024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales C.A.</DisplayName> <Person id="rp05889" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio H.</DisplayName> <Person id="rp05887" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media Deutschland GmbH</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>N-shadowing</Keyword> <Keyword>Homeomorphism</Keyword> <Abstract>We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Finite-Expansivity and N-Shadowing |
| title |
Finite-Expansivity and N-Shadowing |
| spellingShingle |
Finite-Expansivity and N-Shadowing Carrasco-Olivera D. N-shadowing Homeomorphism http://purl.org/pe-repo/ocde/ford#1.01.01 |
| title_short |
Finite-Expansivity and N-Shadowing |
| title_full |
Finite-Expansivity and N-Shadowing |
| title_fullStr |
Finite-Expansivity and N-Shadowing |
| title_full_unstemmed |
Finite-Expansivity and N-Shadowing |
| title_sort |
Finite-Expansivity and N-Shadowing |
| author |
Carrasco-Olivera D. |
| author_facet |
Carrasco-Olivera D. Lee K. Morales C.A. Villavicencio H. |
| author_role |
author |
| author2 |
Lee K. Morales C.A. Villavicencio H. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Carrasco-Olivera D. Lee K. Morales C.A. Villavicencio H. |
| dc.subject.none.fl_str_mv |
N-shadowing |
| topic |
N-shadowing Homeomorphism http://purl.org/pe-repo/ocde/ford#1.01.01 |
| dc.subject.es_PE.fl_str_mv |
Homeomorphism |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
| description |
We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2427 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s00574-021-00253-w |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85103348351 |
| url |
https://hdl.handle.net/20.500.12390/2427 https://doi.org/10.1007/s00574-021-00253-w |
| identifier_str_mv |
2-s2.0-85103348351 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Bulletin of the Brazilian Mathematical Society |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883131172126720 |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).