Finite-Expansivity and N-Shadowing

Descripción del Articulo

We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really st...

Descripción completa

Detalles Bibliográficos
Autores: Carrasco-Olivera D., Lee K., Morales C.A., Villavicencio H.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2427
Enlace del recurso:https://hdl.handle.net/20.500.12390/2427
https://doi.org/10.1007/s00574-021-00253-w
Nivel de acceso:acceso abierto
Materia:N-shadowing
Homeomorphism
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_735535d5cd3a734ee7c1e7f3c618d280
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2427
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp05888600rp06024600rp05889600rp05887600Carrasco-Olivera D.Lee K.Morales C.A.Villavicencio H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2427https://doi.org/10.1007/s00574-021-00253-w2-s2.0-85103348351We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer Science and Business Media Deutschland GmbHBulletin of the Brazilian Mathematical Societyinfo:eu-repo/semantics/openAccessN-shadowingHomeomorphism-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Finite-Expansivity and N-Shadowinginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2427oai:repositorio.concytec.gob.pe:20.500.12390/24272024-05-30 16:08:06.705http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f83257fe-1144-446a-9cc5-948e7e49e5cc"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Finite-Expansivity and N-Shadowing</Title> <PublishedIn> <Publication> <Title>Bulletin of the Brazilian Mathematical Society</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1007/s00574-021-00253-w</DOI> <SCP-Number>2-s2.0-85103348351</SCP-Number> <Authors> <Author> <DisplayName>Carrasco-Olivera D.</DisplayName> <Person id="rp05888" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lee K.</DisplayName> <Person id="rp06024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales C.A.</DisplayName> <Person id="rp05889" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio H.</DisplayName> <Person id="rp05887" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media Deutschland GmbH</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>N-shadowing</Keyword> <Keyword>Homeomorphism</Keyword> <Abstract>We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Finite-Expansivity and N-Shadowing
title Finite-Expansivity and N-Shadowing
spellingShingle Finite-Expansivity and N-Shadowing
Carrasco-Olivera D.
N-shadowing
Homeomorphism
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short Finite-Expansivity and N-Shadowing
title_full Finite-Expansivity and N-Shadowing
title_fullStr Finite-Expansivity and N-Shadowing
title_full_unstemmed Finite-Expansivity and N-Shadowing
title_sort Finite-Expansivity and N-Shadowing
author Carrasco-Olivera D.
author_facet Carrasco-Olivera D.
Lee K.
Morales C.A.
Villavicencio H.
author_role author
author2 Lee K.
Morales C.A.
Villavicencio H.
author2_role author
author
author
dc.contributor.author.fl_str_mv Carrasco-Olivera D.
Lee K.
Morales C.A.
Villavicencio H.
dc.subject.none.fl_str_mv N-shadowing
topic N-shadowing
Homeomorphism
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Homeomorphism
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2427
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00574-021-00253-w
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85103348351
url https://hdl.handle.net/20.500.12390/2427
https://doi.org/10.1007/s00574-021-00253-w
identifier_str_mv 2-s2.0-85103348351
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Bulletin of the Brazilian Mathematical Society
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883131172126720
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).