Extremal unipotent representations for the finite Howe correspondence
Descripción del Articulo
We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. m...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2852 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2852 https://doi.org/10.1016/j.jalgebra.2019.05.046 |
Nivel de acceso: | acceso abierto |
Materia: | Weyl groups Cuspidal unipotent representations Howe correspondence Representation theory of finite groups http://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
CONC_6ee4b34e4dbb9d789fde19b223f3c8b8 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2852 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp07862600Chavez, Jesua Epequin2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2852https://doi.org/10.1016/j.jalgebra.2019.05.046We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi') of a unipotent representation pi' of G'. (C) 2019 Elsevier Inc. All rights reserved.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengElsevier BVJOURNAL OF ALGEBRAinfo:eu-repo/semantics/openAccessWeyl groupsCuspidal unipotent representations-1Howe correspondence-1Representation theory of finite groups-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Extremal unipotent representations for the finite Howe correspondenceinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2852oai:repositorio.concytec.gob.pe:20.500.12390/28522024-05-30 15:25:47.683http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="bb130450-acbd-447b-acf9-de38f7898e75"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Extremal unipotent representations for the finite Howe correspondence</Title> <PublishedIn> <Publication> <Title>JOURNAL OF ALGEBRA</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.jalgebra.2019.05.046</DOI> <Authors> <Author> <DisplayName>Chavez, Jesua Epequin</DisplayName> <Person id="rp07862" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Weyl groups</Keyword> <Keyword>Cuspidal unipotent representations</Keyword> <Keyword>Howe correspondence</Keyword> <Keyword>Representation theory of finite groups</Keyword> <Abstract>We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi') of a unipotent representation pi' of G'. (C) 2019 Elsevier Inc. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Extremal unipotent representations for the finite Howe correspondence |
title |
Extremal unipotent representations for the finite Howe correspondence |
spellingShingle |
Extremal unipotent representations for the finite Howe correspondence Chavez, Jesua Epequin Weyl groups Cuspidal unipotent representations Howe correspondence Representation theory of finite groups http://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
Extremal unipotent representations for the finite Howe correspondence |
title_full |
Extremal unipotent representations for the finite Howe correspondence |
title_fullStr |
Extremal unipotent representations for the finite Howe correspondence |
title_full_unstemmed |
Extremal unipotent representations for the finite Howe correspondence |
title_sort |
Extremal unipotent representations for the finite Howe correspondence |
author |
Chavez, Jesua Epequin |
author_facet |
Chavez, Jesua Epequin |
author_role |
author |
dc.contributor.author.fl_str_mv |
Chavez, Jesua Epequin |
dc.subject.none.fl_str_mv |
Weyl groups |
topic |
Weyl groups Cuspidal unipotent representations Howe correspondence Representation theory of finite groups http://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.es_PE.fl_str_mv |
Cuspidal unipotent representations Howe correspondence Representation theory of finite groups |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi') of a unipotent representation pi' of G'. (C) 2019 Elsevier Inc. All rights reserved. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2852 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jalgebra.2019.05.046 |
url |
https://hdl.handle.net/20.500.12390/2852 https://doi.org/10.1016/j.jalgebra.2019.05.046 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
JOURNAL OF ALGEBRA |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier BV |
publisher.none.fl_str_mv |
Elsevier BV |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175724720717824 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).