Extremal unipotent representations for the finite Howe correspondence

Descripción del Articulo

We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. m...

Descripción completa

Detalles Bibliográficos
Autor: Chavez, Jesua Epequin
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2852
Enlace del recurso:https://hdl.handle.net/20.500.12390/2852
https://doi.org/10.1016/j.jalgebra.2019.05.046
Nivel de acceso:acceso abierto
Materia:Weyl groups
Cuspidal unipotent representations
Howe correspondence
Representation theory of finite groups
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_6ee4b34e4dbb9d789fde19b223f3c8b8
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2852
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07862600Chavez, Jesua Epequin2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2852https://doi.org/10.1016/j.jalgebra.2019.05.046We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi') of a unipotent representation pi' of G'. (C) 2019 Elsevier Inc. All rights reserved.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengElsevier BVJOURNAL OF ALGEBRAinfo:eu-repo/semantics/openAccessWeyl groupsCuspidal unipotent representations-1Howe correspondence-1Representation theory of finite groups-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Extremal unipotent representations for the finite Howe correspondenceinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2852oai:repositorio.concytec.gob.pe:20.500.12390/28522024-05-30 15:25:47.683http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="bb130450-acbd-447b-acf9-de38f7898e75"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Extremal unipotent representations for the finite Howe correspondence</Title> <PublishedIn> <Publication> <Title>JOURNAL OF ALGEBRA</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.jalgebra.2019.05.046</DOI> <Authors> <Author> <DisplayName>Chavez, Jesua Epequin</DisplayName> <Person id="rp07862" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Weyl groups</Keyword> <Keyword>Cuspidal unipotent representations</Keyword> <Keyword>Howe correspondence</Keyword> <Keyword>Representation theory of finite groups</Keyword> <Abstract>We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G&apos;) = (U-m (F-q), U-n(F-q)) and (G, G&apos;) = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi&apos;) of a unipotent representation pi&apos; of G&apos;. (C) 2019 Elsevier Inc. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Extremal unipotent representations for the finite Howe correspondence
title Extremal unipotent representations for the finite Howe correspondence
spellingShingle Extremal unipotent representations for the finite Howe correspondence
Chavez, Jesua Epequin
Weyl groups
Cuspidal unipotent representations
Howe correspondence
Representation theory of finite groups
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short Extremal unipotent representations for the finite Howe correspondence
title_full Extremal unipotent representations for the finite Howe correspondence
title_fullStr Extremal unipotent representations for the finite Howe correspondence
title_full_unstemmed Extremal unipotent representations for the finite Howe correspondence
title_sort Extremal unipotent representations for the finite Howe correspondence
author Chavez, Jesua Epequin
author_facet Chavez, Jesua Epequin
author_role author
dc.contributor.author.fl_str_mv Chavez, Jesua Epequin
dc.subject.none.fl_str_mv Weyl groups
topic Weyl groups
Cuspidal unipotent representations
Howe correspondence
Representation theory of finite groups
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Cuspidal unipotent representations
Howe correspondence
Representation theory of finite groups
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description We study the Howe correspondence for unipotent representations of irreducible dual pairs (G, G') = (U-m (F-q), U-n(F-q)) and (G, G') = (Sp(2m)(F-q), O-2n(epsilon) (F-q)), where F-q denotes the finite field with q elements (q odd) and epsilon = +/- 1. We show how to extract extrema] (i.e. minimal and maximal) irreducible subrepresentations from the image Theta(pi') of a unipotent representation pi' of G'. (C) 2019 Elsevier Inc. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2852
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jalgebra.2019.05.046
url https://hdl.handle.net/20.500.12390/2852
https://doi.org/10.1016/j.jalgebra.2019.05.046
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv JOURNAL OF ALGEBRA
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier BV
publisher.none.fl_str_mv Elsevier BV
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175724720717824
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).