Handling missing values in interrupted time series analysis of longitudinal individual-level data
Descripción del Articulo
Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and p...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2624 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2624 https://doi.org/10.2147/CLEP.S266428 |
Nivel de acceso: | acceso abierto |
Materia: | Segmented regression Big data Electronic health records Interrupted time series analysis Missing data Mixed effects models Multiple imputation http://purl.org/pe-repo/ocde/ford#3.01.01 |
id |
CONC_653e3b98a4b9b9af7f4f7fa2877fc6e7 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2624 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
title |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
spellingShingle |
Handling missing values in interrupted time series analysis of longitudinal individual-level data Bazo-Alvarez J.C. Segmented regression Big data Electronic health records Interrupted time series analysis Missing data Mixed effects models Multiple imputation http://purl.org/pe-repo/ocde/ford#3.01.01 |
title_short |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
title_full |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
title_fullStr |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
title_full_unstemmed |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
title_sort |
Handling missing values in interrupted time series analysis of longitudinal individual-level data |
author |
Bazo-Alvarez J.C. |
author_facet |
Bazo-Alvarez J.C. Morris T.P. Pham T.M. Carpenter J.R. Petersen I. |
author_role |
author |
author2 |
Morris T.P. Pham T.M. Carpenter J.R. Petersen I. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Bazo-Alvarez J.C. Morris T.P. Pham T.M. Carpenter J.R. Petersen I. |
dc.subject.none.fl_str_mv |
Segmented regression |
topic |
Segmented regression Big data Electronic health records Interrupted time series analysis Missing data Mixed effects models Multiple imputation http://purl.org/pe-repo/ocde/ford#3.01.01 |
dc.subject.es_PE.fl_str_mv |
Big data Electronic health records Interrupted time series analysis Missing data Mixed effects models Multiple imputation |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#3.01.01 |
description |
Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2624 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.2147/CLEP.S266428 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85092358260 |
url |
https://hdl.handle.net/20.500.12390/2624 https://doi.org/10.2147/CLEP.S266428 |
identifier_str_mv |
2-s2.0-85092358260 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Clinical Epidemiology |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/3.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/3.0/ |
dc.publisher.none.fl_str_mv |
Dove Medical Press Ltd |
publisher.none.fl_str_mv |
Dove Medical Press Ltd |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/6873f402-9658-4850-aef3-9d185a0b6603/download https://repositorio.concytec.gob.pe/bitstreams/3fdfa68a-4174-4f25-93e2-5b1d545eb0ab/download https://repositorio.concytec.gob.pe/bitstreams/189a03f6-25cf-4b25-bafa-499caadc954a/download |
bitstream.checksum.fl_str_mv |
16d63b9f7cb318db035be18f1aada607 7706785265d7de6f200b67aa9ac4e856 1fe9ead008d019ad4e00de9063ad002d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175637550497792 |
spelling |
Publicationrp00647600rp06748600rp06745600rp06746600rp06747600Bazo-Alvarez J.C.Morris T.P.Pham T.M.Carpenter J.R.Petersen I.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2624https://doi.org/10.2147/CLEP.S2664282-s2.0-85092358260Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengDove Medical Press LtdClinical Epidemiologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/3.0/Segmented regressionBig data-1Electronic health records-1Interrupted time series analysis-1Missing data-1Mixed effects models-1Multiple imputation-1http://purl.org/pe-repo/ocde/ford#3.01.01-1Handling missing values in interrupted time series analysis of longitudinal individual-level datainfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#ORIGINALHandling Missing Values in Interrupted Time.pdfHandling Missing Values in Interrupted Time.pdfapplication/pdf1501442https://repositorio.concytec.gob.pe/bitstreams/6873f402-9658-4850-aef3-9d185a0b6603/download16d63b9f7cb318db035be18f1aada607MD51TEXTHandling Missing Values in Interrupted Time.pdf.txtHandling Missing Values in Interrupted Time.pdf.txtExtracted texttext/plain66387https://repositorio.concytec.gob.pe/bitstreams/3fdfa68a-4174-4f25-93e2-5b1d545eb0ab/download7706785265d7de6f200b67aa9ac4e856MD52THUMBNAILHandling Missing Values in Interrupted Time.pdf.jpgHandling Missing Values in Interrupted Time.pdf.jpgGenerated Thumbnailimage/jpeg5802https://repositorio.concytec.gob.pe/bitstreams/189a03f6-25cf-4b25-bafa-499caadc954a/download1fe9ead008d019ad4e00de9063ad002dMD5320.500.12390/2624oai:repositorio.concytec.gob.pe:20.500.12390/26242025-01-16 22:00:39.759https://creativecommons.org/licenses/by-nc/3.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8a83ca7f-3fe8-4d7a-b783-a4e58752cff3"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Handling missing values in interrupted time series analysis of longitudinal individual-level data</Title> <PublishedIn> <Publication> <Title>Clinical Epidemiology</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.2147/CLEP.S266428</DOI> <SCP-Number>2-s2.0-85092358260</SCP-Number> <Authors> <Author> <DisplayName>Bazo-Alvarez J.C.</DisplayName> <Person id="rp00647" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morris T.P.</DisplayName> <Person id="rp06748" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pham T.M.</DisplayName> <Person id="rp06745" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carpenter J.R.</DisplayName> <Person id="rp06746" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Petersen I.</DisplayName> <Person id="rp06747" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Dove Medical Press Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc/3.0/</License> <Keyword>Segmented regression</Keyword> <Keyword>Big data</Keyword> <Keyword>Electronic health records</Keyword> <Keyword>Interrupted time series analysis</Keyword> <Keyword>Missing data</Keyword> <Keyword>Mixed effects models</Keyword> <Keyword>Multiple imputation</Keyword> <Abstract>Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).