Handling missing values in interrupted time series analysis of longitudinal individual-level data

Descripción del Articulo

Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and p...

Descripción completa

Detalles Bibliográficos
Autores: Bazo-Alvarez J.C., Morris T.P., Pham T.M., Carpenter J.R., Petersen I.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2624
Enlace del recurso:https://hdl.handle.net/20.500.12390/2624
https://doi.org/10.2147/CLEP.S266428
Nivel de acceso:acceso abierto
Materia:Segmented regression
Big data
Electronic health records
Interrupted time series analysis
Missing data
Mixed effects models
Multiple imputation
http://purl.org/pe-repo/ocde/ford#3.01.01
id CONC_653e3b98a4b9b9af7f4f7fa2877fc6e7
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2624
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Handling missing values in interrupted time series analysis of longitudinal individual-level data
title Handling missing values in interrupted time series analysis of longitudinal individual-level data
spellingShingle Handling missing values in interrupted time series analysis of longitudinal individual-level data
Bazo-Alvarez J.C.
Segmented regression
Big data
Electronic health records
Interrupted time series analysis
Missing data
Mixed effects models
Multiple imputation
http://purl.org/pe-repo/ocde/ford#3.01.01
title_short Handling missing values in interrupted time series analysis of longitudinal individual-level data
title_full Handling missing values in interrupted time series analysis of longitudinal individual-level data
title_fullStr Handling missing values in interrupted time series analysis of longitudinal individual-level data
title_full_unstemmed Handling missing values in interrupted time series analysis of longitudinal individual-level data
title_sort Handling missing values in interrupted time series analysis of longitudinal individual-level data
author Bazo-Alvarez J.C.
author_facet Bazo-Alvarez J.C.
Morris T.P.
Pham T.M.
Carpenter J.R.
Petersen I.
author_role author
author2 Morris T.P.
Pham T.M.
Carpenter J.R.
Petersen I.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bazo-Alvarez J.C.
Morris T.P.
Pham T.M.
Carpenter J.R.
Petersen I.
dc.subject.none.fl_str_mv Segmented regression
topic Segmented regression
Big data
Electronic health records
Interrupted time series analysis
Missing data
Mixed effects models
Multiple imputation
http://purl.org/pe-repo/ocde/ford#3.01.01
dc.subject.es_PE.fl_str_mv Big data
Electronic health records
Interrupted time series analysis
Missing data
Mixed effects models
Multiple imputation
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.01.01
description Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2624
dc.identifier.doi.none.fl_str_mv https://doi.org/10.2147/CLEP.S266428
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85092358260
url https://hdl.handle.net/20.500.12390/2624
https://doi.org/10.2147/CLEP.S266428
identifier_str_mv 2-s2.0-85092358260
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Clinical Epidemiology
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/3.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/3.0/
dc.publisher.none.fl_str_mv Dove Medical Press Ltd
publisher.none.fl_str_mv Dove Medical Press Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/6873f402-9658-4850-aef3-9d185a0b6603/download
https://repositorio.concytec.gob.pe/bitstreams/3fdfa68a-4174-4f25-93e2-5b1d545eb0ab/download
https://repositorio.concytec.gob.pe/bitstreams/189a03f6-25cf-4b25-bafa-499caadc954a/download
bitstream.checksum.fl_str_mv 16d63b9f7cb318db035be18f1aada607
7706785265d7de6f200b67aa9ac4e856
1fe9ead008d019ad4e00de9063ad002d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175637550497792
spelling Publicationrp00647600rp06748600rp06745600rp06746600rp06747600Bazo-Alvarez J.C.Morris T.P.Pham T.M.Carpenter J.R.Petersen I.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2624https://doi.org/10.2147/CLEP.S2664282-s2.0-85092358260Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengDove Medical Press LtdClinical Epidemiologyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/3.0/Segmented regressionBig data-1Electronic health records-1Interrupted time series analysis-1Missing data-1Mixed effects models-1Multiple imputation-1http://purl.org/pe-repo/ocde/ford#3.01.01-1Handling missing values in interrupted time series analysis of longitudinal individual-level datainfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#ORIGINALHandling Missing Values in Interrupted Time.pdfHandling Missing Values in Interrupted Time.pdfapplication/pdf1501442https://repositorio.concytec.gob.pe/bitstreams/6873f402-9658-4850-aef3-9d185a0b6603/download16d63b9f7cb318db035be18f1aada607MD51TEXTHandling Missing Values in Interrupted Time.pdf.txtHandling Missing Values in Interrupted Time.pdf.txtExtracted texttext/plain66387https://repositorio.concytec.gob.pe/bitstreams/3fdfa68a-4174-4f25-93e2-5b1d545eb0ab/download7706785265d7de6f200b67aa9ac4e856MD52THUMBNAILHandling Missing Values in Interrupted Time.pdf.jpgHandling Missing Values in Interrupted Time.pdf.jpgGenerated Thumbnailimage/jpeg5802https://repositorio.concytec.gob.pe/bitstreams/189a03f6-25cf-4b25-bafa-499caadc954a/download1fe9ead008d019ad4e00de9063ad002dMD5320.500.12390/2624oai:repositorio.concytec.gob.pe:20.500.12390/26242025-01-16 22:00:39.759https://creativecommons.org/licenses/by-nc/3.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8a83ca7f-3fe8-4d7a-b783-a4e58752cff3"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Handling missing values in interrupted time series analysis of longitudinal individual-level data</Title> <PublishedIn> <Publication> <Title>Clinical Epidemiology</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.2147/CLEP.S266428</DOI> <SCP-Number>2-s2.0-85092358260</SCP-Number> <Authors> <Author> <DisplayName>Bazo-Alvarez J.C.</DisplayName> <Person id="rp00647" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morris T.P.</DisplayName> <Person id="rp06748" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pham T.M.</DisplayName> <Person id="rp06745" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carpenter J.R.</DisplayName> <Person id="rp06746" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Petersen I.</DisplayName> <Person id="rp06747" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Dove Medical Press Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc/3.0/</License> <Keyword>Segmented regression</Keyword> <Keyword>Big data</Keyword> <Keyword>Electronic health records</Keyword> <Keyword>Interrupted time series analysis</Keyword> <Keyword>Missing data</Keyword> <Keyword>Mixed effects models</Keyword> <Keyword>Multiple imputation</Keyword> <Abstract>Background: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative analysis methods. Methods: Using electronic health records from the UK, we evaluated weight change over time induced by the initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against estimates from mixed models with and without multiple imputation of missing covariates, using individual-level data. Then, we conducted a simulation study for insight about the different results in a controlled environment. Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed models gave less biased estimates than SR analysis and, in combination with multilevel multiple imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other types of ITS outcomes (eg, proportions). Other standard methods applied in ITS do not help to correct this bias problem. Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because taking averages of individual-level data before SR means that data at the cluster level are missing not at random. Avoiding the averaging-step and using mixed models with or without multilevel multiple imputation of covariates is recommended. © 2020 Bazo-Alvarez et al.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).