A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots

Descripción del Articulo

Autonomous robots are playing important roles in academic, technological, and scientific activities. Thus, their behavior is getting more complex, particularly, in tasks related to mapping an environment and localizing themselves. These tasks comprise the Simultaneous Localization and Mapping (SLAM)...

Descripción completa

Detalles Bibliográficos
Autores: Cornejo-Lupa M.A., Ticona-Herrera R.P., Cardinale Y., Barrios-Aranibar D.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2484
Enlace del recurso:https://hdl.handle.net/20.500.12390/2484
https://doi.org/10.1145/3408316
Nivel de acceso:acceso abierto
Materia:Web ontologies
robots
semantic web
SLAM
http://purl.org/pe-repo/ocde/ford#2.02.02
id CONC_5c6f14967d69e75c9d5ee2f7bf2b23a8
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2484
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
title A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
spellingShingle A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
Cornejo-Lupa M.A.
Web ontologies
robots
semantic web
SLAM
http://purl.org/pe-repo/ocde/ford#2.02.02
title_short A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
title_full A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
title_fullStr A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
title_full_unstemmed A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
title_sort A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots
author Cornejo-Lupa M.A.
author_facet Cornejo-Lupa M.A.
Ticona-Herrera R.P.
Cardinale Y.
Barrios-Aranibar D.
author_role author
author2 Ticona-Herrera R.P.
Cardinale Y.
Barrios-Aranibar D.
author2_role author
author
author
dc.contributor.author.fl_str_mv Cornejo-Lupa M.A.
Ticona-Herrera R.P.
Cardinale Y.
Barrios-Aranibar D.
dc.subject.none.fl_str_mv Web ontologies
topic Web ontologies
robots
semantic web
SLAM
http://purl.org/pe-repo/ocde/ford#2.02.02
dc.subject.es_PE.fl_str_mv robots
semantic web
SLAM
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.02
description Autonomous robots are playing important roles in academic, technological, and scientific activities. Thus, their behavior is getting more complex, particularly, in tasks related to mapping an environment and localizing themselves. These tasks comprise the Simultaneous Localization and Mapping (SLAM) problem. Representation of knowledge related to the SLAM problem with a standard, flexible, and well-defined model, provides the base to develop efficient and interoperable solutions. As many existing works demonstrate, Semantic Web seems to be a clear approach, since they have formulated ontologies, as the base data model to represent such knowledge. In this article, we survey the most popular and recent SLAM ontologies with our aim being threefold: (i) propose a classification of SLAM ontologies according to the main knowledge needed to model the SLAM problem; (ii) identify existing ontologies for classifying, comparing, and contrasting them, in order to conceptualize SLAM domain for mobile robots; and (iii) pin-down lessons to learn from existing solutions in order to design better solutions and identify new research directions and further improvements. We compare the identified SLAM ontologies according to the proposed classification and, finally, we explore new data fields to enrich existing ontologies and highlight new possibilities in terms of performance and efficiency for SLAM solutions. © 2020 ACM.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2484
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1145/3408316
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85094322972
url https://hdl.handle.net/20.500.12390/2484
https://doi.org/10.1145/3408316
identifier_str_mv 2-s2.0-85094322972
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv ACM Computing Surveys
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Association for Computing Machinery
publisher.none.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175833488457728
spelling Publicationrp06231600rp06342600rp05703600rp00572600Cornejo-Lupa M.A.Ticona-Herrera R.P.Cardinale Y.Barrios-Aranibar D.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2484https://doi.org/10.1145/34083162-s2.0-85094322972Autonomous robots are playing important roles in academic, technological, and scientific activities. Thus, their behavior is getting more complex, particularly, in tasks related to mapping an environment and localizing themselves. These tasks comprise the Simultaneous Localization and Mapping (SLAM) problem. Representation of knowledge related to the SLAM problem with a standard, flexible, and well-defined model, provides the base to develop efficient and interoperable solutions. As many existing works demonstrate, Semantic Web seems to be a clear approach, since they have formulated ontologies, as the base data model to represent such knowledge. In this article, we survey the most popular and recent SLAM ontologies with our aim being threefold: (i) propose a classification of SLAM ontologies according to the main knowledge needed to model the SLAM problem; (ii) identify existing ontologies for classifying, comparing, and contrasting them, in order to conceptualize SLAM domain for mobile robots; and (iii) pin-down lessons to learn from existing solutions in order to design better solutions and identify new research directions and further improvements. We compare the identified SLAM ontologies according to the proposed classification and, finally, we explore new data fields to enrich existing ontologies and highlight new possibilities in terms of performance and efficiency for SLAM solutions. © 2020 ACM.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing MachineryACM Computing Surveysinfo:eu-repo/semantics/openAccessWeb ontologiesrobots-1semantic web-1SLAM-1http://purl.org/pe-repo/ocde/ford#2.02.02-1A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robotsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2484oai:repositorio.concytec.gob.pe:20.500.12390/24842024-05-30 16:08:36.607http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="fefcc4d3-37d3-4a16-817b-2898560a1fc3"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots</Title> <PublishedIn> <Publication> <Title>ACM Computing Surveys</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1145/3408316</DOI> <SCP-Number>2-s2.0-85094322972</SCP-Number> <Authors> <Author> <DisplayName>Cornejo-Lupa M.A.</DisplayName> <Person id="rp06231" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ticona-Herrera R.P.</DisplayName> <Person id="rp06342" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cardinale Y.</DisplayName> <Person id="rp05703" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Barrios-Aranibar D.</DisplayName> <Person id="rp00572" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Web ontologies</Keyword> <Keyword>robots</Keyword> <Keyword>semantic web</Keyword> <Keyword>SLAM</Keyword> <Abstract>Autonomous robots are playing important roles in academic, technological, and scientific activities. Thus, their behavior is getting more complex, particularly, in tasks related to mapping an environment and localizing themselves. These tasks comprise the Simultaneous Localization and Mapping (SLAM) problem. Representation of knowledge related to the SLAM problem with a standard, flexible, and well-defined model, provides the base to develop efficient and interoperable solutions. As many existing works demonstrate, Semantic Web seems to be a clear approach, since they have formulated ontologies, as the base data model to represent such knowledge. In this article, we survey the most popular and recent SLAM ontologies with our aim being threefold: (i) propose a classification of SLAM ontologies according to the main knowledge needed to model the SLAM problem; (ii) identify existing ontologies for classifying, comparing, and contrasting them, in order to conceptualize SLAM domain for mobile robots; and (iii) pin-down lessons to learn from existing solutions in order to design better solutions and identify new research directions and further improvements. We compare the identified SLAM ontologies according to the proposed classification and, finally, we explore new data fields to enrich existing ontologies and highlight new possibilities in terms of performance and efficiency for SLAM solutions. © 2020 ACM.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).