Optimal window size for the extraction of features for tool wear estimation
Descripción del Articulo
This work was funded by CONCYTEC-FONDECYT in the framework of call E038-01, grant No. 020-2019-FONDECYT-BM-INC.INV.
| Autores: | , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3031 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/3031 https://doi.org/10.1109/INTERCON52678.2021.9532759 |
| Nivel de acceso: | acceso abierto |
| Materia: | SVR CNC milling machine feature engineering hyperparameter optimization https://purl.org/pe-repo/ocde/ford#2.03.01 |
| id |
CONC_569078a78db415ecc97eae199542208a |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3031 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Optimal window size for the extraction of features for tool wear estimation |
| title |
Optimal window size for the extraction of features for tool wear estimation |
| spellingShingle |
Optimal window size for the extraction of features for tool wear estimation Casusol A.J. SVR CNC milling machine feature engineering hyperparameter optimization https://purl.org/pe-repo/ocde/ford#2.03.01 |
| title_short |
Optimal window size for the extraction of features for tool wear estimation |
| title_full |
Optimal window size for the extraction of features for tool wear estimation |
| title_fullStr |
Optimal window size for the extraction of features for tool wear estimation |
| title_full_unstemmed |
Optimal window size for the extraction of features for tool wear estimation |
| title_sort |
Optimal window size for the extraction of features for tool wear estimation |
| author |
Casusol A.J. |
| author_facet |
Casusol A.J. Zegarra F.C. Vargas-Machuca J. Coronado A.M. |
| author_role |
author |
| author2 |
Zegarra F.C. Vargas-Machuca J. Coronado A.M. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Casusol A.J. Zegarra F.C. Vargas-Machuca J. Coronado A.M. |
| dc.subject.none.fl_str_mv |
SVR |
| topic |
SVR CNC milling machine feature engineering hyperparameter optimization https://purl.org/pe-repo/ocde/ford#2.03.01 |
| dc.subject.es_PE.fl_str_mv |
CNC milling machine feature engineering hyperparameter optimization |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.03.01 |
| description |
This work was funded by CONCYTEC-FONDECYT in the framework of call E038-01, grant No. 020-2019-FONDECYT-BM-INC.INV. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3031 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/INTERCON52678.2021.9532759 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85116228625 |
| url |
https://hdl.handle.net/20.500.12390/3031 https://doi.org/10.1109/INTERCON52678.2021.9532759 |
| identifier_str_mv |
2-s2.0-85116228625 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844882992441327616 |
| spelling |
Publicationrp08678600rp08675600rp08677600rp08676600Casusol A.J.Zegarra F.C.Vargas-Machuca J.Coronado A.M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3031https://doi.org/10.1109/INTERCON52678.2021.95327592-s2.0-85116228625This work was funded by CONCYTEC-FONDECYT in the framework of call E038-01, grant No. 020-2019-FONDECYT-BM-INC.INV.Prediction of machine tool wear is highly dependent on the quality of the measured data and the ability to extract information from such raw data. These data are presented in the form of time series, which cannot be used directly by conventional machine learning algorithms, such as the one used in this work. To link the raw data and the learning algorithm, it is first necessary to extract a feature set from the time series. An important but little analyzed aspect is the size of the window required for feature extraction. If this window is too small, not much information will be obtained, on the other hand, if the window is too large, there will be more chance of outliers and other irregularities of the data being introduced. In the present work, we use a novel database corresponding to machine tool wear to demonstrate the impact of window size. An optimally chosen window size, plus an adequate feature extraction, allows us to obtain results comparable to the state of the art, i.e., median scores of 89 %, which are comparable to that obtained by the first place of the recently held data challenge. © 2021 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021info:eu-repo/semantics/openAccessSVRCNC milling machine-1feature engineering-1hyperparameter optimization-1https://purl.org/pe-repo/ocde/ford#2.03.01-1Optimal window size for the extraction of features for tool wear estimationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3031oai:repositorio.concytec.gob.pe:20.500.12390/30312024-05-30 16:13:18.72http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="824f0cce-6a5e-46d6-b86a-748a71374695"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Optimal window size for the extraction of features for tool wear estimation</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1109/INTERCON52678.2021.9532759</DOI> <SCP-Number>2-s2.0-85116228625</SCP-Number> <Authors> <Author> <DisplayName>Casusol A.J.</DisplayName> <Person id="rp08678" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zegarra F.C.</DisplayName> <Person id="rp08675" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vargas-Machuca J.</DisplayName> <Person id="rp08677" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coronado A.M.</DisplayName> <Person id="rp08676" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>SVR</Keyword> <Keyword>CNC milling machine</Keyword> <Keyword>feature engineering</Keyword> <Keyword>hyperparameter optimization</Keyword> <Abstract>Prediction of machine tool wear is highly dependent on the quality of the measured data and the ability to extract information from such raw data. These data are presented in the form of time series, which cannot be used directly by conventional machine learning algorithms, such as the one used in this work. To link the raw data and the learning algorithm, it is first necessary to extract a feature set from the time series. An important but little analyzed aspect is the size of the window required for feature extraction. If this window is too small, not much information will be obtained, on the other hand, if the window is too large, there will be more chance of outliers and other irregularities of the data being introduced. In the present work, we use a novel database corresponding to machine tool wear to demonstrate the impact of window size. An optimally chosen window size, plus an adequate feature extraction, allows us to obtain results comparable to the state of the art, i.e., median scores of 89 %, which are comparable to that obtained by the first place of the recently held data challenge. © 2021 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).