Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations

Descripción del Articulo

This work was supported by a Paul G. Allen Family Foundation Distinguished Investigator Award and the Moore Foundation Data-Driven Discovery Investigator program. The second author gratefully acknowledges CONCYTEC for a scholarship in support of graduate studies.
Detalles Bibliográficos
Autores: Poco J., Mayhua A., Heer J.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/557
Enlace del recurso:https://hdl.handle.net/20.500.12390/557
https://doi.org/10.1109/TVCG.2017.2744320
Nivel de acceso:acceso abierto
Materia:Visualization images
Character recognition
Color
Computer vision
Data mining
Data visualization
Feature extraction
Flow visualization
Image coding
Image processing
Information retrieval
Mapping
Optical character recognition
Signal encoding
Visualization
Automatic inference
chart understanding
Image color analysis
Interpretation errors
Optical character recognition software
redesign
Static visualizations
Color image processing
https://purl.org/pe-repo/ocde/ford#1.02.01
id CONC_55af52c63860f5dc52f9deb2eb0fc944
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/557
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
title Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
spellingShingle Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
Poco J.
Visualization images
Character recognition
Character recognition
Color
Computer vision
Data mining
Data visualization
Feature extraction
Flow visualization
Image coding
Image processing
Information retrieval
Mapping
Optical character recognition
Signal encoding
Visualization
Automatic inference
chart understanding
Image color analysis
Interpretation errors
Optical character recognition software
Optical character recognition software
redesign
Static visualizations
Color image processing
Color image processing
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
title_full Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
title_fullStr Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
title_full_unstemmed Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
title_sort Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
author Poco J.
author_facet Poco J.
Mayhua A.
Heer J.
author_role author
author2 Mayhua A.
Heer J.
author2_role author
author
dc.contributor.author.fl_str_mv Poco J.
Mayhua A.
Heer J.
dc.subject.none.fl_str_mv Visualization images
topic Visualization images
Character recognition
Character recognition
Color
Computer vision
Data mining
Data visualization
Feature extraction
Flow visualization
Image coding
Image processing
Information retrieval
Mapping
Optical character recognition
Signal encoding
Visualization
Automatic inference
chart understanding
Image color analysis
Interpretation errors
Optical character recognition software
Optical character recognition software
redesign
Static visualizations
Color image processing
Color image processing
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_PE.fl_str_mv Character recognition
Character recognition
Color
Computer vision
Data mining
Data visualization
Feature extraction
Flow visualization
Image coding
Image processing
Information retrieval
Mapping
Optical character recognition
Signal encoding
Visualization
Automatic inference
chart understanding
Image color analysis
Interpretation errors
Optical character recognition software
Optical character recognition software
redesign
Static visualizations
Color image processing
Color image processing
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description This work was supported by a Paul G. Allen Family Foundation Distinguished Investigator Award and the Moore Foundation Data-Driven Discovery Investigator program. The second author gratefully acknowledges CONCYTEC for a scholarship in support of graduate studies.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/557
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/TVCG.2017.2744320
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85028693893
url https://hdl.handle.net/20.500.12390/557
https://doi.org/10.1109/TVCG.2017.2744320
identifier_str_mv 2-s2.0-85028693893
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv IEEE Transactions on Visualization and Computer Graphics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175788252889088
spelling Publicationrp00995600rp00996600rp00997600Poco J.Mayhua A.Heer J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/557https://doi.org/10.1109/TVCG.2017.27443202-s2.0-85028693893This work was supported by a Paul G. Allen Family Foundation Distinguished Investigator Award and the Moore Foundation Data-Driven Discovery Investigator program. The second author gratefully acknowledges CONCYTEC for a scholarship in support of graduate studies.Visualization designers regularly use color to encode quantitative or categorical data. However, visualizations “in the wild” often violate perceptual color design principles and may only be available as bitmap images. In this work, we contribute a method to semi-automatically extract color encodings from a bitmap visualization image. Given an image and a legend location, we classify the legend as describing either a discrete or continuous color encoding, identify the colors used, and extract legend text using OCR methods. We then combine this information to recover the specific color mapping. Users can also correct interpretation errors using an annotation interface. We evaluate our techniques using a corpus of images extracted from scientific papers and demonstrate accurate automatic inference of color mappings across a variety of chart types. In addition, we present two applications of our method: automatic recoloring to improve perceptual effectiveness, and interactive overlays to enable improved reading of static visualizations.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE Computer SocietyIEEE Transactions on Visualization and Computer Graphicsinfo:eu-repo/semantics/openAccessVisualization imagesCharacter recognition-1Character recognition-1Color-1Computer vision-1Data mining-1Data visualization-1Feature extraction-1Flow visualization-1Image coding-1Image processing-1Information retrieval-1Mapping-1Optical character recognition-1Signal encoding-1Visualization-1Automatic inference-1chart understanding-1Image color analysis-1Interpretation errors-1Optical character recognition software-1Optical character recognition software-1redesign-1Static visualizations-1Color image processing-1Color image processing-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Extracting and Retargeting Color Mappings from Bitmap Images of Visualizationsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/557oai:repositorio.concytec.gob.pe:20.500.12390/5572024-05-30 15:35:44.62http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e35eeefd-3281-41eb-baa9-af3f27db6b59"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations</Title> <PublishedIn> <Publication> <Title>IEEE Transactions on Visualization and Computer Graphics</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1109/TVCG.2017.2744320</DOI> <SCP-Number>2-s2.0-85028693893</SCP-Number> <Authors> <Author> <DisplayName>Poco J.</DisplayName> <Person id="rp00995" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mayhua A.</DisplayName> <Person id="rp00996" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Heer J.</DisplayName> <Person id="rp00997" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Computer Society</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Visualization images</Keyword> <Keyword>Character recognition</Keyword> <Keyword>Character recognition</Keyword> <Keyword>Color</Keyword> <Keyword>Computer vision</Keyword> <Keyword>Data mining</Keyword> <Keyword>Data visualization</Keyword> <Keyword>Feature extraction</Keyword> <Keyword>Flow visualization</Keyword> <Keyword>Image coding</Keyword> <Keyword>Image processing</Keyword> <Keyword>Information retrieval</Keyword> <Keyword>Mapping</Keyword> <Keyword>Optical character recognition</Keyword> <Keyword>Signal encoding</Keyword> <Keyword>Visualization</Keyword> <Keyword>Automatic inference</Keyword> <Keyword>chart understanding</Keyword> <Keyword>Image color analysis</Keyword> <Keyword>Interpretation errors</Keyword> <Keyword>Optical character recognition software</Keyword> <Keyword>Optical character recognition software</Keyword> <Keyword>redesign</Keyword> <Keyword>Static visualizations</Keyword> <Keyword>Color image processing</Keyword> <Keyword>Color image processing</Keyword> <Abstract>Visualization designers regularly use color to encode quantitative or categorical data. However, visualizations “in the wild” often violate perceptual color design principles and may only be available as bitmap images. In this work, we contribute a method to semi-automatically extract color encodings from a bitmap visualization image. Given an image and a legend location, we classify the legend as describing either a discrete or continuous color encoding, identify the colors used, and extract legend text using OCR methods. We then combine this information to recover the specific color mapping. Users can also correct interpretation errors using an annotation interface. We evaluate our techniques using a corpus of images extracted from scientific papers and demonstrate accurate automatic inference of color mappings across a variety of chart types. In addition, we present two applications of our method: automatic recoloring to improve perceptual effectiveness, and interactive overlays to enable improved reading of static visualizations.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.441585
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).