Thermomechanical evaluation of geopolymeric and conventional concretes

Descripción del Articulo

Geopolymers are a class of inorganic synthetic materials that in recent years have received extensive interest of the scientific community, mainly due to the variety of applications in which they can be used. The synthesis of these materials is based on a chemical process called geopolymerization, w...

Descripción completa

Detalles Bibliográficos
Autores: Huamán-Mamani F.A., Gamarra-Delgado J.F., Paredes-Paz J.J., Bringas-Rodríguez V.C., Mayta-Ponce D.L., Rodríguez-Guillén G.P.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2599
Enlace del recurso:https://hdl.handle.net/20.500.12390/2599
https://doi.org/10.11159/mmme20.131
Nivel de acceso:acceso abierto
Materia:Thermomechanical
Construction
Conventional concrete
Geopolymer concrete
Mining tailings
http://purl.org/pe-repo/ocde/ford#2.03.01
id CONC_5300ed0dc5638c8756f7fec3f033b518
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2599
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Thermomechanical evaluation of geopolymeric and conventional concretes
title Thermomechanical evaluation of geopolymeric and conventional concretes
spellingShingle Thermomechanical evaluation of geopolymeric and conventional concretes
Huamán-Mamani F.A.
Thermomechanical
Construction
Conventional concrete
Geopolymer concrete
Mining tailings
http://purl.org/pe-repo/ocde/ford#2.03.01
title_short Thermomechanical evaluation of geopolymeric and conventional concretes
title_full Thermomechanical evaluation of geopolymeric and conventional concretes
title_fullStr Thermomechanical evaluation of geopolymeric and conventional concretes
title_full_unstemmed Thermomechanical evaluation of geopolymeric and conventional concretes
title_sort Thermomechanical evaluation of geopolymeric and conventional concretes
author Huamán-Mamani F.A.
author_facet Huamán-Mamani F.A.
Gamarra-Delgado J.F.
Paredes-Paz J.J.
Bringas-Rodríguez V.C.
Mayta-Ponce D.L.
Rodríguez-Guillén G.P.
author_role author
author2 Gamarra-Delgado J.F.
Paredes-Paz J.J.
Bringas-Rodríguez V.C.
Mayta-Ponce D.L.
Rodríguez-Guillén G.P.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Huamán-Mamani F.A.
Gamarra-Delgado J.F.
Paredes-Paz J.J.
Bringas-Rodríguez V.C.
Mayta-Ponce D.L.
Rodríguez-Guillén G.P.
dc.subject.none.fl_str_mv Thermomechanical
topic Thermomechanical
Construction
Conventional concrete
Geopolymer concrete
Mining tailings
http://purl.org/pe-repo/ocde/ford#2.03.01
dc.subject.es_PE.fl_str_mv Construction
Conventional concrete
Geopolymer concrete
Mining tailings
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.03.01
description Geopolymers are a class of inorganic synthetic materials that in recent years have received extensive interest of the scientific community, mainly due to the variety of applications in which they can be used. The synthesis of these materials is based on a chemical process called geopolymerization, which consists of the alkaline activation of amorphous alumina and silica oxides present in many natural raw materials and industrial solid waste. Therefore, the present work proposes the use of inorganic mining residues (mine tailings) from gold mining in the southern region of Peru, for the manufacture of geopolymeric concrete. The first part of the research focused on the physical, structural and microstructural characterization of the raw material (fine sand and mining tailings), then the volumetric matrix of mixtures for five types of geopolymer concrete was determined. Cylindrical samples of 20 mm diameter and 40 mm high geopolymeric concrete were manufactured, at the same time conventional Portland cement concrete was manufactured for comparison purposes. All materials were mechanically characterized by uniaxial compression tests at variable temperatures (from room temperature to 600 ºC), and they were also microstructurally characterized before and after mechanical tests. The main microstructural mechanisms responsible for the fracture and plastic deformation of geopolymeric and conventional Portland cement concretes have been determined. © 2020, Avestia Publishing. All rights reserved.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2599
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11159/mmme20.131
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097432378
url https://hdl.handle.net/20.500.12390/2599
https://doi.org/10.11159/mmme20.131
identifier_str_mv 2-s2.0-85097432378
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.publisher.none.fl_str_mv Avestia Publishing
publisher.none.fl_str_mv Avestia Publishing
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175662328348672
spelling Publicationrp05846600rp06682600rp06684600rp06683600rp05848600rp05847600Huamán-Mamani F.A.Gamarra-Delgado J.F.Paredes-Paz J.J.Bringas-Rodríguez V.C.Mayta-Ponce D.L.Rodríguez-Guillén G.P.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2599https://doi.org/10.11159/mmme20.1312-s2.0-85097432378Geopolymers are a class of inorganic synthetic materials that in recent years have received extensive interest of the scientific community, mainly due to the variety of applications in which they can be used. The synthesis of these materials is based on a chemical process called geopolymerization, which consists of the alkaline activation of amorphous alumina and silica oxides present in many natural raw materials and industrial solid waste. Therefore, the present work proposes the use of inorganic mining residues (mine tailings) from gold mining in the southern region of Peru, for the manufacture of geopolymeric concrete. The first part of the research focused on the physical, structural and microstructural characterization of the raw material (fine sand and mining tailings), then the volumetric matrix of mixtures for five types of geopolymer concrete was determined. Cylindrical samples of 20 mm diameter and 40 mm high geopolymeric concrete were manufactured, at the same time conventional Portland cement concrete was manufactured for comparison purposes. All materials were mechanically characterized by uniaxial compression tests at variable temperatures (from room temperature to 600 ºC), and they were also microstructurally characterized before and after mechanical tests. The main microstructural mechanisms responsible for the fracture and plastic deformation of geopolymeric and conventional Portland cement concretes have been determined. © 2020, Avestia Publishing. All rights reserved.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAvestia PublishingProceedings of the World Congress on Mechanical, Chemical, and Material Engineeringinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/ThermomechanicalConstruction-1Conventional concrete-1Geopolymer concrete-1Mining tailings-1http://purl.org/pe-repo/ocde/ford#2.03.01-1Thermomechanical evaluation of geopolymeric and conventional concretesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2599oai:repositorio.concytec.gob.pe:20.500.12390/25992024-05-30 16:09:42.482https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="99ec584f-73df-4419-afc7-4f1d58cfe298"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Thermomechanical evaluation of geopolymeric and conventional concretes</Title> <PublishedIn> <Publication> <Title>Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.11159/mmme20.131</DOI> <SCP-Number>2-s2.0-85097432378</SCP-Number> <Authors> <Author> <DisplayName>Huamán-Mamani F.A.</DisplayName> <Person id="rp05846" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gamarra-Delgado J.F.</DisplayName> <Person id="rp06682" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Paredes-Paz J.J.</DisplayName> <Person id="rp06684" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bringas-Rodríguez V.C.</DisplayName> <Person id="rp06683" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mayta-Ponce D.L.</DisplayName> <Person id="rp05848" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rodríguez-Guillén G.P.</DisplayName> <Person id="rp05847" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Avestia Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Thermomechanical</Keyword> <Keyword>Construction</Keyword> <Keyword>Conventional concrete</Keyword> <Keyword>Geopolymer concrete</Keyword> <Keyword>Mining tailings</Keyword> <Abstract>Geopolymers are a class of inorganic synthetic materials that in recent years have received extensive interest of the scientific community, mainly due to the variety of applications in which they can be used. The synthesis of these materials is based on a chemical process called geopolymerization, which consists of the alkaline activation of amorphous alumina and silica oxides present in many natural raw materials and industrial solid waste. Therefore, the present work proposes the use of inorganic mining residues (mine tailings) from gold mining in the southern region of Peru, for the manufacture of geopolymeric concrete. The first part of the research focused on the physical, structural and microstructural characterization of the raw material (fine sand and mining tailings), then the volumetric matrix of mixtures for five types of geopolymer concrete was determined. Cylindrical samples of 20 mm diameter and 40 mm high geopolymeric concrete were manufactured, at the same time conventional Portland cement concrete was manufactured for comparison purposes. All materials were mechanically characterized by uniaxial compression tests at variable temperatures (from room temperature to 600 ºC), and they were also microstructurally characterized before and after mechanical tests. The main microstructural mechanisms responsible for the fracture and plastic deformation of geopolymeric and conventional Portland cement concretes have been determined. © 2020, Avestia Publishing. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.273795
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).