Understanding Implicit User Feedback from Multisensorial and Physiological Data: A case study

Descripción del Articulo

Ensuring the quality of user experience is very important for increasing the acceptance likelihood of software applications, which can be affected by several contextual factors that continuously change over time (e.g., emotional state of end-user). Due to these changes in the context, software conti...

Descripción completa

Detalles Bibliográficos
Autores: Suni-Lopez F., Condori-Fernandez N., Catala A.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2535
Enlace del recurso:https://hdl.handle.net/20.500.12390/2535
https://doi.org/10.1145/3387940.3391466
Nivel de acceso:acceso abierto
Materia:Physiological data
Actionable emotion
Case study
Context information
Implicit user feedback
http://purl.org/pe-repo/ocde/ford#3.01.08
Descripción
Sumario:Ensuring the quality of user experience is very important for increasing the acceptance likelihood of software applications, which can be affected by several contextual factors that continuously change over time (e.g., emotional state of end-user). Due to these changes in the context, software continually needs to adapt for delivering software services that can satisfy user needs. However, to achieve this adaptation, it is important to gather and understand the user feedback. In this paper, we mainly investigate whether physiological data can be considered and used as a form of implicit user feedback. To this end, we conducted a case study involving a tourist traveling abroad, who used a wearable device for monitoring his physiological data, and a smartphone with a mobile app for reminding him to take his medication on time during four days. Through the case study, we were able to identify some factors and activities as emotional triggers, which were used for understanding the user context. Our results highlight the importance of having a context analyzer, which can help the system to determine whether the detected stress could be considered as actionable and consequently as implicit user feedback. © 2020 ACM.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).