Shadowable Points for Flows

Descripción del Articulo

A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every poin...

Descripción completa

Detalles Bibliográficos
Autores: Aponte, J., Villavicencio, H.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2879
Enlace del recurso:https://hdl.handle.net/20.500.12390/2879
https://doi.org/10.1007/s10883-017-9381-8
Nivel de acceso:acceso abierto
Materia:Numerical Analysis
Control and Optimization
Algebra and Number Theory
Control and Systems Engineering
http://purl.org/pe-repo/ocde/ford#1.03.05
id CONC_4d7d478d0e2c5cbe92b98f9f09afd751
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2879
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Shadowable Points for Flows
title Shadowable Points for Flows
spellingShingle Shadowable Points for Flows
Aponte, J.
Numerical Analysis
Control and Optimization
Algebra and Number Theory
Control and Systems Engineering
http://purl.org/pe-repo/ocde/ford#1.03.05
title_short Shadowable Points for Flows
title_full Shadowable Points for Flows
title_fullStr Shadowable Points for Flows
title_full_unstemmed Shadowable Points for Flows
title_sort Shadowable Points for Flows
author Aponte, J.
author_facet Aponte, J.
Villavicencio, H.
author_role author
author2 Villavicencio, H.
author2_role author
dc.contributor.author.fl_str_mv Aponte, J.
Villavicencio, H.
dc.subject.none.fl_str_mv Numerical Analysis
topic Numerical Analysis
Control and Optimization
Algebra and Number Theory
Control and Systems Engineering
http://purl.org/pe-repo/ocde/ford#1.03.05
dc.subject.es_PE.fl_str_mv Control and Optimization
Algebra and Number Theory
Control and Systems Engineering
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.03.05
description A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2879
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10883-017-9381-8
url https://hdl.handle.net/20.500.12390/2879
https://doi.org/10.1007/s10883-017-9381-8
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Science and Business Media LLC
publisher.none.fl_str_mv Springer Science and Business Media LLC
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883036714303488
spelling Publicationrp08022600rp07641600Aponte, J.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/2879https://doi.org/10.1007/s10883-017-9381-8A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengSpringer Science and Business Media LLCJOURNAL OF DYNAMICAL AND CONTROL SYSTEMSinfo:eu-repo/semantics/openAccessNumerical AnalysisControl and Optimization-1Algebra and Number Theory-1Control and Systems Engineering-1http://purl.org/pe-repo/ocde/ford#1.03.05-1Shadowable Points for Flowsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2879oai:repositorio.concytec.gob.pe:20.500.12390/28792024-05-30 15:25:54.665http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="d91e26ff-4489-4c5d-b2d1-0c390fdad0fb"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Shadowable Points for Flows</Title> <PublishedIn> <Publication> <Title>JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1007/s10883-017-9381-8</DOI> <Authors> <Author> <DisplayName>Aponte, J.</DisplayName> <Person id="rp08022" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media LLC</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Numerical Analysis</Keyword> <Keyword>Control and Optimization</Keyword> <Keyword>Algebra and Number Theory</Keyword> <Keyword>Control and Systems Engineering</Keyword> <Abstract>A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).