Shadowable Points for Flows
Descripción del Articulo
A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every poin...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2879 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2879 https://doi.org/10.1007/s10883-017-9381-8 |
| Nivel de acceso: | acceso abierto |
| Materia: | Numerical Analysis Control and Optimization Algebra and Number Theory Control and Systems Engineering http://purl.org/pe-repo/ocde/ford#1.03.05 |
| id |
CONC_4d7d478d0e2c5cbe92b98f9f09afd751 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2879 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Shadowable Points for Flows |
| title |
Shadowable Points for Flows |
| spellingShingle |
Shadowable Points for Flows Aponte, J. Numerical Analysis Control and Optimization Algebra and Number Theory Control and Systems Engineering http://purl.org/pe-repo/ocde/ford#1.03.05 |
| title_short |
Shadowable Points for Flows |
| title_full |
Shadowable Points for Flows |
| title_fullStr |
Shadowable Points for Flows |
| title_full_unstemmed |
Shadowable Points for Flows |
| title_sort |
Shadowable Points for Flows |
| author |
Aponte, J. |
| author_facet |
Aponte, J. Villavicencio, H. |
| author_role |
author |
| author2 |
Villavicencio, H. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Aponte, J. Villavicencio, H. |
| dc.subject.none.fl_str_mv |
Numerical Analysis |
| topic |
Numerical Analysis Control and Optimization Algebra and Number Theory Control and Systems Engineering http://purl.org/pe-repo/ocde/ford#1.03.05 |
| dc.subject.es_PE.fl_str_mv |
Control and Optimization Algebra and Number Theory Control and Systems Engineering |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.03.05 |
| description |
A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2879 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s10883-017-9381-8 |
| url |
https://hdl.handle.net/20.500.12390/2879 https://doi.org/10.1007/s10883-017-9381-8 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer Science and Business Media LLC |
| publisher.none.fl_str_mv |
Springer Science and Business Media LLC |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883036714303488 |
| spelling |
Publicationrp08022600rp07641600Aponte, J.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/2879https://doi.org/10.1007/s10883-017-9381-8A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengSpringer Science and Business Media LLCJOURNAL OF DYNAMICAL AND CONTROL SYSTEMSinfo:eu-repo/semantics/openAccessNumerical AnalysisControl and Optimization-1Algebra and Number Theory-1Control and Systems Engineering-1http://purl.org/pe-repo/ocde/ford#1.03.05-1Shadowable Points for Flowsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2879oai:repositorio.concytec.gob.pe:20.500.12390/28792024-05-30 15:25:54.665http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="d91e26ff-4489-4c5d-b2d1-0c390fdad0fb"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Shadowable Points for Flows</Title> <PublishedIn> <Publication> <Title>JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1007/s10883-017-9381-8</DOI> <Authors> <Author> <DisplayName>Aponte, J.</DisplayName> <Person id="rp08022" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media LLC</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Numerical Analysis</Keyword> <Keyword>Control and Optimization</Keyword> <Keyword>Algebra and Number Theory</Keyword> <Keyword>Control and Systems Engineering</Keyword> <Abstract>A shadowable point for a flow is a point where the shadowing lemma holds for pseudo-orbits passing through it. We prove that this concept satisfies the following properties: the set of shadowable points is invariant and a Gδ set. A flow has the pseudo-orbit tracing property if and only if every point is shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is shadowable. The chain recurrent points which are shadowable are exactly those that can be are approximated by periodic points when the flow is expansive. These results extends those presented in Morales (Dyn Syst. 2016;31(3):347–356). We study the relations between shadowable points of a homeomorphism and the shadowable points of its suspension flow. We characterize the set of forward shadowable points for transitive flows and chain transitive flows. We prove that the geometric Lorenz attractor does not have shadowable points. We show that in the presence of shadowable points chain transitive flows are transitive and that transitivity is a necessary condition for chain recurrent flows with shadowable points whenever the phase space is connected. Finally, as an application, these results we give concise proofs of some well known theorems establishing that flows with POTP admitting some kind of recurrence are minimal. © 2017, Springer Science+Business Media, LLC.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).