Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
Descripción del Articulo
Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around obje...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2804 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2804 https://doi.org/10.1007/978-3-030-30645-8_18 |
| Nivel de acceso: | acceso abierto |
| Materia: | Texture analysis Deep Convolutional Neural Network Feature extraction http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_4d77c00834a68c0fcb3a18bacd17f762 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2804 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| title |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| spellingShingle |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors Scabini, Leonardo F. S. Texture analysis Deep Convolutional Neural Network Feature extraction http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| title_full |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| title_fullStr |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| title_full_unstemmed |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| title_sort |
Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors |
| author |
Scabini, Leonardo F. S. |
| author_facet |
Scabini, Leonardo F. S. Condori, Rayner H. M. Ribas, Lucas C. Bruno, Odemir M. |
| author_role |
author |
| author2 |
Condori, Rayner H. M. Ribas, Lucas C. Bruno, Odemir M. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Scabini, Leonardo F. S. Condori, Rayner H. M. Ribas, Lucas C. Bruno, Odemir M. |
| dc.subject.none.fl_str_mv |
Texture analysis |
| topic |
Texture analysis Deep Convolutional Neural Network Feature extraction http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Deep Convolutional Neural Network Feature extraction |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2804 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-30645-8_18 |
| url |
https://hdl.handle.net/20.500.12390/2804 https://doi.org/10.1007/978-3-030-30645-8_18 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer International Publishing |
| publisher.none.fl_str_mv |
Springer International Publishing |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883041722302464 |
| spelling |
Publicationrp07509600rp07510600rp07511600rp07507600Scabini, Leonardo F. S.Condori, Rayner H. M.Ribas, Lucas C.Bruno, Odemir M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2804https://doi.org/10.1007/978-3-030-30645-8_18Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer International PublishingIMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT IIinfo:eu-repo/semantics/openAccessTexture analysisDeep Convolutional-1Neural Network-1Feature extraction-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Evaluating Deep Convolutional Neural Networks as Texture Feature Extractorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2804oai:repositorio.concytec.gob.pe:20.500.12390/28042024-05-30 15:49:26.507http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e3c9e5d7-8f7c-46a0-bf61-8fb5cfd9b1ea"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors</Title> <PublishedIn> <Publication> <Title>IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-30645-8_18</DOI> <Authors> <Author> <DisplayName>Scabini, Leonardo F. S.</DisplayName> <Person id="rp07509" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Rayner H. M.</DisplayName> <Person id="rp07510" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ribas, Lucas C.</DisplayName> <Person id="rp07511" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, Odemir M.</DisplayName> <Person id="rp07507" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer International Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Texture analysis</Keyword> <Keyword>Deep Convolutional</Keyword> <Keyword>Neural Network</Keyword> <Keyword>Feature extraction</Keyword> <Abstract>Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.476704 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).