Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors

Descripción del Articulo

Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around obje...

Descripción completa

Detalles Bibliográficos
Autores: Scabini, Leonardo F. S., Condori, Rayner H. M., Ribas, Lucas C., Bruno, Odemir M.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2804
Enlace del recurso:https://hdl.handle.net/20.500.12390/2804
https://doi.org/10.1007/978-3-030-30645-8_18
Nivel de acceso:acceso abierto
Materia:Texture analysis
Deep Convolutional
Neural Network
Feature extraction
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_4d77c00834a68c0fcb3a18bacd17f762
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2804
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
title Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
spellingShingle Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
Scabini, Leonardo F. S.
Texture analysis
Deep Convolutional
Neural Network
Feature extraction
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
title_full Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
title_fullStr Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
title_full_unstemmed Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
title_sort Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors
author Scabini, Leonardo F. S.
author_facet Scabini, Leonardo F. S.
Condori, Rayner H. M.
Ribas, Lucas C.
Bruno, Odemir M.
author_role author
author2 Condori, Rayner H. M.
Ribas, Lucas C.
Bruno, Odemir M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Scabini, Leonardo F. S.
Condori, Rayner H. M.
Ribas, Lucas C.
Bruno, Odemir M.
dc.subject.none.fl_str_mv Texture analysis
topic Texture analysis
Deep Convolutional
Neural Network
Feature extraction
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Deep Convolutional
Neural Network
Feature extraction
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2804
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-30645-8_18
url https://hdl.handle.net/20.500.12390/2804
https://doi.org/10.1007/978-3-030-30645-8_18
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer International Publishing
publisher.none.fl_str_mv Springer International Publishing
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883041722302464
spelling Publicationrp07509600rp07510600rp07511600rp07507600Scabini, Leonardo F. S.Condori, Rayner H. M.Ribas, Lucas C.Bruno, Odemir M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2804https://doi.org/10.1007/978-3-030-30645-8_18Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer International PublishingIMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT IIinfo:eu-repo/semantics/openAccessTexture analysisDeep Convolutional-1Neural Network-1Feature extraction-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Evaluating Deep Convolutional Neural Networks as Texture Feature Extractorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2804oai:repositorio.concytec.gob.pe:20.500.12390/28042024-05-30 15:49:26.507http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e3c9e5d7-8f7c-46a0-bf61-8fb5cfd9b1ea"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Evaluating Deep Convolutional Neural Networks as Texture Feature Extractors</Title> <PublishedIn> <Publication> <Title>IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-30645-8_18</DOI> <Authors> <Author> <DisplayName>Scabini, Leonardo F. S.</DisplayName> <Person id="rp07509" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Rayner H. M.</DisplayName> <Person id="rp07510" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ribas, Lucas C.</DisplayName> <Person id="rp07511" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bruno, Odemir M.</DisplayName> <Person id="rp07507" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer International Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Texture analysis</Keyword> <Keyword>Deep Convolutional</Keyword> <Keyword>Neural Network</Keyword> <Keyword>Feature extraction</Keyword> <Abstract>Texture is an important visual property which has been largely employed for image characterization. Recently, Convolutional Networks has been the predominant approach on Computer Vision, and their application on texture analysis shows interesting results. However, their popularity steers around object recognition, and several convolutional architectures have been proposed and trained for this task. Therefore, this works evaluates 17 of the most diffused Deep Convolutional Neural Networks when employed for texture analysis as feature extractors. Image descriptors are obtained through Global Average Pooling over the output of the last convolutional layer of networks with random weights or learned from the ImageNet dataset. The analysis is performed under 6 texture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM). Results using networks with random weights indicates that the architecture alone plays an important role in texture characterization, and it can even provide useful features for classification for some datasets. On the other hand, we found that although ImageNet weights usually provide the best results it can also perform similar to random weights in some cases, indicating that transferring convolutional weights learned on ImageNet may not always be appropriate for texture analysis. When comparing the best models, our results corroborate that DenseNet presents the highest overall performance while keeping a significantly small number of hyperparameters, thus we recommend its use for texture characterization.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.476704
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).