Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)

Descripción del Articulo

Tropical high-mountain permafrost has a unique thermal regime due to its exposure to strong solar radiation and to rough surface snow morphology, which reduce ground heat transfer from the surface. Latent heat transfer and higher albedo that occur during the snow-covered season contribute to positiv...

Descripción completa

Detalles Bibliográficos
Autores: Yoshikawa K., Úbeda J., Masías P., Pari W., Apaza F., Vasquez P., Ccallata B., Concha R., Luna G., Iparraguirre J., Ramos I., De la Cruz G., Cruz R., Pellitero R., Bonshoms M.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2482
Enlace del recurso:https://hdl.handle.net/20.500.12390/2482
https://doi.org/10.1002/ppp.2064
Nivel de acceso:acceso abierto
Materia:tropical permafrost
Andes
El Niño
ENSO
high elevation
penitentes
Peruvian
http://purl.org/pe-repo/ocde/ford#1.05.10
id CONC_4a1a134a824ac3f286395168ad5ac18c
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2482
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
title Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
spellingShingle Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
Yoshikawa K.
tropical permafrost
Andes
El Niño
ENSO
high elevation
penitentes
Peruvian
http://purl.org/pe-repo/ocde/ford#1.05.10
title_short Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
title_full Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
title_fullStr Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
title_full_unstemmed Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
title_sort Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)
author Yoshikawa K.
author_facet Yoshikawa K.
Úbeda J.
Masías P.
Pari W.
Apaza F.
Vasquez P.
Ccallata B.
Concha R.
Luna G.
Iparraguirre J.
Ramos I.
De la Cruz G.
Cruz R.
Pellitero R.
Bonshoms M.
author_role author
author2 Úbeda J.
Masías P.
Pari W.
Apaza F.
Vasquez P.
Ccallata B.
Concha R.
Luna G.
Iparraguirre J.
Ramos I.
De la Cruz G.
Cruz R.
Pellitero R.
Bonshoms M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Yoshikawa K.
Úbeda J.
Masías P.
Pari W.
Apaza F.
Vasquez P.
Ccallata B.
Concha R.
Luna G.
Iparraguirre J.
Ramos I.
De la Cruz G.
Cruz R.
Pellitero R.
Bonshoms M.
dc.subject.none.fl_str_mv tropical permafrost
topic tropical permafrost
Andes
El Niño
ENSO
high elevation
penitentes
Peruvian
http://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.es_PE.fl_str_mv Andes
El Niño
ENSO
high elevation
penitentes
Peruvian
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.10
description Tropical high-mountain permafrost has a unique thermal regime due to its exposure to strong solar radiation and to rough surface snow morphology, which reduce ground heat transfer from the surface. Latent heat transfer and higher albedo that occur during the snow-covered season contribute to positive feedback that supports the presence of permafrost. This preliminary study reports on the thermal state characteristics of tropical mountain permafrost in Peru. This work also evaluates the potential combined impact of the El Niño–Southern Oscillation (ENSO) in the mountain permafrost of the Coropuna and Chachani volcanic complexes, both located at the western edge of the southern Peruvian Altiplano. Temperature monitoring boreholes were established at 5,217 m at Coropuna and 5,331 m at Chachani, and electrical resistivity was surveyed in both sites. This 7-year discontinuous record of permafrost temperature data encompasses historically extreme El Niño/La Niña events. Our results show that the current lower-altitude permafrost boundary (~5,100 m a.s.l.) is critically influenced by the balance of wet and dry seasons: permafrost tends to deplete during drought years. Typical permafrost thickness was 10–20 m and contained ice-rich pore spaces. The presence of permafrost and its thermal resistance depends on ice content and on higher albedo, usually due to: (a) hydrothermal alteration, which transforms the volcanic rocks into surfaces with ideal albedo for permafrost resilience; and (b) sublimation of the snow cover, forming ice-pinnacles named penitentes. © 2020 John Wiley & Sons, Ltd.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2482
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/ppp.2064
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85085003684
url https://hdl.handle.net/20.500.12390/2482
https://doi.org/10.1002/ppp.2064
identifier_str_mv 2-s2.0-85085003684
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Permafrost and Periglacial Processes
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv John Wiley and Sons Ltd
publisher.none.fl_str_mv John Wiley and Sons Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175548216016896
spelling Publicationrp06338600rp06336600rp06333600rp06329600rp06339600rp06330600rp06326600rp06332600rp06331600rp06337600rp06327600rp06335600rp06328600rp06334600rp06095600Yoshikawa K.Úbeda J.Masías P.Pari W.Apaza F.Vasquez P.Ccallata B.Concha R.Luna G.Iparraguirre J.Ramos I.De la Cruz G.Cruz R.Pellitero R.Bonshoms M.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2482https://doi.org/10.1002/ppp.20642-s2.0-85085003684Tropical high-mountain permafrost has a unique thermal regime due to its exposure to strong solar radiation and to rough surface snow morphology, which reduce ground heat transfer from the surface. Latent heat transfer and higher albedo that occur during the snow-covered season contribute to positive feedback that supports the presence of permafrost. This preliminary study reports on the thermal state characteristics of tropical mountain permafrost in Peru. This work also evaluates the potential combined impact of the El Niño–Southern Oscillation (ENSO) in the mountain permafrost of the Coropuna and Chachani volcanic complexes, both located at the western edge of the southern Peruvian Altiplano. Temperature monitoring boreholes were established at 5,217 m at Coropuna and 5,331 m at Chachani, and electrical resistivity was surveyed in both sites. This 7-year discontinuous record of permafrost temperature data encompasses historically extreme El Niño/La Niña events. Our results show that the current lower-altitude permafrost boundary (~5,100 m a.s.l.) is critically influenced by the balance of wet and dry seasons: permafrost tends to deplete during drought years. Typical permafrost thickness was 10–20 m and contained ice-rich pore spaces. The presence of permafrost and its thermal resistance depends on ice content and on higher albedo, usually due to: (a) hydrothermal alteration, which transforms the volcanic rocks into surfaces with ideal albedo for permafrost resilience; and (b) sublimation of the snow cover, forming ice-pinnacles named penitentes. © 2020 John Wiley & Sons, Ltd.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengJohn Wiley and Sons LtdPermafrost and Periglacial Processesinfo:eu-repo/semantics/openAccesstropical permafrostAndes-1El Niño-1ENSO-1high elevation-1penitentes-1Peruvian-1http://purl.org/pe-repo/ocde/ford#1.05.10-1Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)info:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2482oai:repositorio.concytec.gob.pe:20.500.12390/24822024-05-30 16:08:35.909http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="57d2d82b-1190-4258-b16f-0772c267f536"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)</Title> <PublishedIn> <Publication> <Title>Permafrost and Periglacial Processes</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1002/ppp.2064</DOI> <SCP-Number>2-s2.0-85085003684</SCP-Number> <Authors> <Author> <DisplayName>Yoshikawa K.</DisplayName> <Person id="rp06338" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Úbeda J.</DisplayName> <Person id="rp06336" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Masías P.</DisplayName> <Person id="rp06333" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pari W.</DisplayName> <Person id="rp06329" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Apaza F.</DisplayName> <Person id="rp06339" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vasquez P.</DisplayName> <Person id="rp06330" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ccallata B.</DisplayName> <Person id="rp06326" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Concha R.</DisplayName> <Person id="rp06332" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Luna G.</DisplayName> <Person id="rp06331" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Iparraguirre J.</DisplayName> <Person id="rp06337" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ramos I.</DisplayName> <Person id="rp06327" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>De la Cruz G.</DisplayName> <Person id="rp06335" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cruz R.</DisplayName> <Person id="rp06328" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pellitero R.</DisplayName> <Person id="rp06334" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bonshoms M.</DisplayName> <Person id="rp06095" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>John Wiley and Sons Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>tropical permafrost</Keyword> <Keyword>Andes</Keyword> <Keyword>El Niño</Keyword> <Keyword>ENSO</Keyword> <Keyword>high elevation</Keyword> <Keyword>penitentes</Keyword> <Keyword>Peruvian</Keyword> <Abstract>Tropical high-mountain permafrost has a unique thermal regime due to its exposure to strong solar radiation and to rough surface snow morphology, which reduce ground heat transfer from the surface. Latent heat transfer and higher albedo that occur during the snow-covered season contribute to positive feedback that supports the presence of permafrost. This preliminary study reports on the thermal state characteristics of tropical mountain permafrost in Peru. This work also evaluates the potential combined impact of the El Niño–Southern Oscillation (ENSO) in the mountain permafrost of the Coropuna and Chachani volcanic complexes, both located at the western edge of the southern Peruvian Altiplano. Temperature monitoring boreholes were established at 5,217 m at Coropuna and 5,331 m at Chachani, and electrical resistivity was surveyed in both sites. This 7-year discontinuous record of permafrost temperature data encompasses historically extreme El Niño/La Niña events. Our results show that the current lower-altitude permafrost boundary (~5,100 m a.s.l.) is critically influenced by the balance of wet and dry seasons: permafrost tends to deplete during drought years. Typical permafrost thickness was 10–20 m and contained ice-rich pore spaces. The presence of permafrost and its thermal resistance depends on ice content and on higher albedo, usually due to: (a) hydrothermal alteration, which transforms the volcanic rocks into surfaces with ideal albedo for permafrost resilience; and (b) sublimation of the snow cover, forming ice-pinnacles named penitentes. © 2020 John Wiley &amp; Sons, Ltd.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.4481325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).