Abnormal event detection in video using motion and appearance information
Descripción del Articulo
This work was supported by grant 011-2013-FONDECYT (Master Program) from the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU).
Autores: | , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/506 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/506 https://doi.org/10.1007/978-3-319-75193-1_46 |
Nivel de acceso: | acceso abierto |
Materia: | Video surveillance Computer vision Feature extraction Information use Motion analysis Optical flows Security systems Abnormal event detections Detection accuracy Detection and localization Motion information State-of-the-art methods Video analysis Pattern recognition https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
CONC_3be846d818a3cb203d6eb06f005b6b82 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/506 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Abnormal event detection in video using motion and appearance information |
title |
Abnormal event detection in video using motion and appearance information |
spellingShingle |
Abnormal event detection in video using motion and appearance information Menejes Palomino N. Video surveillance Computer vision Feature extraction Information use Motion analysis Optical flows Security systems Abnormal event detections Detection accuracy Detection and localization Motion information State-of-the-art methods Video analysis Pattern recognition https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Abnormal event detection in video using motion and appearance information |
title_full |
Abnormal event detection in video using motion and appearance information |
title_fullStr |
Abnormal event detection in video using motion and appearance information |
title_full_unstemmed |
Abnormal event detection in video using motion and appearance information |
title_sort |
Abnormal event detection in video using motion and appearance information |
author |
Menejes Palomino N. |
author_facet |
Menejes Palomino N. Cámara Chávez G. |
author_role |
author |
author2 |
Cámara Chávez G. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Menejes Palomino N. Cámara Chávez G. |
dc.subject.none.fl_str_mv |
Video surveillance |
topic |
Video surveillance Computer vision Feature extraction Information use Motion analysis Optical flows Security systems Abnormal event detections Detection accuracy Detection and localization Motion information State-of-the-art methods Video analysis Pattern recognition https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.es_PE.fl_str_mv |
Computer vision Feature extraction Information use Motion analysis Optical flows Security systems Abnormal event detections Detection accuracy Detection and localization Motion information State-of-the-art methods Video analysis Pattern recognition |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
This work was supported by grant 011-2013-FONDECYT (Master Program) from the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU). |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
9783319751924 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/506 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-319-75193-1_46 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85042233597 |
identifier_str_mv |
9783319751924 2-s2.0-85042233597 |
url |
https://hdl.handle.net/20.500.12390/506 https://doi.org/10.1007/978-3-319-75193-1_46 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175773744791552 |
spelling |
Publicationrp00668600rp00667600Menejes Palomino N.Cámara Chávez G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20189783319751924https://hdl.handle.net/20.500.12390/506https://doi.org/10.1007/978-3-319-75193-1_462-s2.0-85042233597This work was supported by grant 011-2013-FONDECYT (Master Program) from the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU).This paper presents an approach for the detection and localization of abnormal events in pedestrian areas. The goal is to design a model to detect abnormal events in video sequences using motion and appearance information. Motion information is represented through the use of the velocity and acceleration of optical flow and the appearance information is represented by texture and optical flow gradient. Unlike literature methods, our proposed approach provides a general solution to detect both global and local abnormal events. Furthermore, in the detection stage, we propose a classification by local regions. Experimental results on UMN and UCSD datasets confirm that the detection accuracy of our method is comparable to state-of-the-art methods.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessVideo surveillanceComputer vision-1Feature extraction-1Information use-1Motion analysis-1Optical flows-1Security systems-1Abnormal event detections-1Detection accuracy-1Detection and localization-1Motion information-1State-of-the-art methods-1Video analysis-1Pattern recognition-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Abnormal event detection in video using motion and appearance informationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/506oai:repositorio.concytec.gob.pe:20.500.12390/5062024-05-30 15:35:37.021http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="dacfa8d7-75a9-4d13-b548-c8d09639440e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Abnormal event detection in video using motion and appearance information</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1007/978-3-319-75193-1_46</DOI> <SCP-Number>2-s2.0-85042233597</SCP-Number> <ISBN>9783319751924</ISBN> <Authors> <Author> <DisplayName>Menejes Palomino N.</DisplayName> <Person id="rp00668" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cámara Chávez G.</DisplayName> <Person id="rp00667" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Video surveillance</Keyword> <Keyword>Computer vision</Keyword> <Keyword>Feature extraction</Keyword> <Keyword>Information use</Keyword> <Keyword>Motion analysis</Keyword> <Keyword>Optical flows</Keyword> <Keyword>Security systems</Keyword> <Keyword>Abnormal event detections</Keyword> <Keyword>Detection accuracy</Keyword> <Keyword>Detection and localization</Keyword> <Keyword>Motion information</Keyword> <Keyword>State-of-the-art methods</Keyword> <Keyword>Video analysis</Keyword> <Keyword>Pattern recognition</Keyword> <Abstract>This paper presents an approach for the detection and localization of abnormal events in pedestrian areas. The goal is to design a model to detect abnormal events in video sequences using motion and appearance information. Motion information is represented through the use of the velocity and acceleration of optical flow and the appearance information is represented by texture and optical flow gradient. Unlike literature methods, our proposed approach provides a general solution to detect both global and local abnormal events. Furthermore, in the detection stage, we propose a classification by local regions. Experimental results on UMN and UCSD datasets confirm that the detection accuracy of our method is comparable to state-of-the-art methods.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.210282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).