An enhanced triplet CNN based on body parts for person re-identificacion
Descripción del Articulo
This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science,Technology and Technological Innovation (CONCYTEC-PERU).
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/510 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/510 https://doi.org/10.1109/SCCC.2017.8405126 |
Nivel de acceso: | acceso abierto |
Materia: | State of the art Computers Camera view Feature representation Human bodies Improve performance Overfitting Partial occlusions Person re identifications Computer science https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
CONC_2cce8b5eb6b53d1f5c6798e0ce139dfc |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/510 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
An enhanced triplet CNN based on body parts for person re-identificacion |
title |
An enhanced triplet CNN based on body parts for person re-identificacion |
spellingShingle |
An enhanced triplet CNN based on body parts for person re-identificacion Espinoza J.D. State of the art Computers Camera view Feature representation Human bodies Improve performance Overfitting Partial occlusions Person re identifications Computer science https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
An enhanced triplet CNN based on body parts for person re-identificacion |
title_full |
An enhanced triplet CNN based on body parts for person re-identificacion |
title_fullStr |
An enhanced triplet CNN based on body parts for person re-identificacion |
title_full_unstemmed |
An enhanced triplet CNN based on body parts for person re-identificacion |
title_sort |
An enhanced triplet CNN based on body parts for person re-identificacion |
author |
Espinoza J.D. |
author_facet |
Espinoza J.D. Chavez G.C. Torres G.H. |
author_role |
author |
author2 |
Chavez G.C. Torres G.H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Espinoza J.D. Chavez G.C. Torres G.H. |
dc.subject.none.fl_str_mv |
State of the art |
topic |
State of the art Computers Camera view Feature representation Human bodies Improve performance Overfitting Partial occlusions Person re identifications Computer science https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.es_PE.fl_str_mv |
Computers Camera view Feature representation Human bodies Improve performance Overfitting Partial occlusions Person re identifications Computer science |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science,Technology and Technological Innovation (CONCYTEC-PERU). |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
9781538634837 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/510 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/SCCC.2017.8405126 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85050964708 |
identifier_str_mv |
9781538634837 2-s2.0-85050964708 |
url |
https://hdl.handle.net/20.500.12390/510 https://doi.org/10.1109/SCCC.2017.8405126 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
Proceedings - International Conference of the Chilean Computer Science Society, SCCC |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175807770034176 |
spelling |
Publicationrp00692600rp00690600rp00691600Espinoza J.D.Chavez G.C.Torres G.H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20189781538634837https://hdl.handle.net/20.500.12390/510https://doi.org/10.1109/SCCC.2017.84051262-s2.0-85050964708This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science,Technology and Technological Innovation (CONCYTEC-PERU).Person re-identificacion consists of reidentificating person through a set of images that is taken by different camera views. Despite recent advances in this field, this problem still remains a challenge due to partial occlusions, changes in illumination, variation in human body poses. In this paper, we present an enhanced Triplet CNN based on body-parts for person re-identification (AETCNN). We design a new model able to learn local body-part features and integrate them to produce the final feature representation of each input person. In addition, to avoid over-fitting due to the small size of the dataset, we propose an improvement in triplet assignment to speed up the convergence and improve performance. Experiments show that our approach achieves very promising results in (CUHK01) dataset and we advance state of the art, improving most of the results of the state of the art with a simpler architecture, achieving 76.50% in rank 1.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaIEEE Computer SocietyProceedings - International Conference of the Chilean Computer Science Society, SCCCinfo:eu-repo/semantics/openAccessState of the artComputers-1Camera view-1Feature representation-1Human bodies-1Improve performance-1Overfitting-1Partial occlusions-1Person re identifications-1Computer science-1https://purl.org/pe-repo/ocde/ford#1.02.01-1An enhanced triplet CNN based on body parts for person re-identificacioninfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/510oai:repositorio.concytec.gob.pe:20.500.12390/5102024-05-30 15:35:37.764http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="ec9698e3-071a-4b0b-9bac-bc0cc94fb4a8"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>An enhanced triplet CNN based on body parts for person re-identificacion</Title> <PublishedIn> <Publication> <Title>Proceedings - International Conference of the Chilean Computer Science Society, SCCC</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1109/SCCC.2017.8405126</DOI> <SCP-Number>2-s2.0-85050964708</SCP-Number> <ISBN>9781538634837</ISBN> <Authors> <Author> <DisplayName>Espinoza J.D.</DisplayName> <Person id="rp00692" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chavez G.C.</DisplayName> <Person id="rp00690" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Torres G.H.</DisplayName> <Person id="rp00691" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Computer Society</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>State of the art</Keyword> <Keyword>Computers</Keyword> <Keyword>Camera view</Keyword> <Keyword>Feature representation</Keyword> <Keyword>Human bodies</Keyword> <Keyword>Improve performance</Keyword> <Keyword>Overfitting</Keyword> <Keyword>Partial occlusions</Keyword> <Keyword>Person re identifications</Keyword> <Keyword>Computer science</Keyword> <Abstract>Person re-identificacion consists of reidentificating person through a set of images that is taken by different camera views. Despite recent advances in this field, this problem still remains a challenge due to partial occlusions, changes in illumination, variation in human body poses. In this paper, we present an enhanced Triplet CNN based on body-parts for person re-identification (AETCNN). We design a new model able to learn local body-part features and integrate them to produce the final feature representation of each input person. In addition, to avoid over-fitting due to the small size of the dataset, we propose an improvement in triplet assignment to speed up the convergence and improve performance. Experiments show that our approach achieves very promising results in (CUHK01) dataset and we advance state of the art, improving most of the results of the state of the art with a simpler architecture, achieving 76.50% in rank 1.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).