Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors

Descripción del Articulo

In the Neutrino Physics Field, a lot of careful measurements am made such as : cross section measure¬ment, neutrino oscillation, atmospheric neutrino. Etc. In such experimental measurements one has to get the most accurate numbers as possible but in doing so one meets a lot of constraints and variab...

Descripción completa

Detalles Bibliográficos
Autor: Chavarría Rodríguez, Alberto Edgar
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1698
Enlace del recurso:https://hdl.handle.net/20.500.12390/1698
Nivel de acceso:acceso abierto
Materia:Neutrinos
Detector Test Beam
Detector Minerva TB2
https://purl.org/pe-repo/ocde/ford#1.03.00
id CONC_2ab5d30c6f58c0bf442bd178b89fdee1
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1698
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
title Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
spellingShingle Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
Chavarría Rodríguez, Alberto Edgar
Neutrinos
Detector Test Beam
Detector Minerva TB2
https://purl.org/pe-repo/ocde/ford#1.03.00
title_short Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
title_full Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
title_fullStr Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
title_full_unstemmed Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
title_sort Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors
author Chavarría Rodríguez, Alberto Edgar
author_facet Chavarría Rodríguez, Alberto Edgar
author_role author
dc.contributor.author.fl_str_mv Chavarría Rodríguez, Alberto Edgar
dc.subject.none.fl_str_mv Neutrinos
topic Neutrinos
Detector Test Beam
Detector Minerva TB2
https://purl.org/pe-repo/ocde/ford#1.03.00
dc.subject.es_PE.fl_str_mv Detector Test Beam
Detector Minerva TB2
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.00
description In the Neutrino Physics Field, a lot of careful measurements am made such as : cross section measure¬ment, neutrino oscillation, atmospheric neutrino. Etc. In such experimental measurements one has to get the most accurate numbers as possible but in doing so one meets a lot of constraints and variables. Such is the case of the Test Beam detector (a replica of the full MIN HR//A detector where we lest and compare new targets and devices to put them further in the MINERr/A detector). The way we detect some signal in the detector is by using a scintillator material attached to a photomultiplier (when a charged particle passes through the scintillator, this emits a photon of certain spectra and this light works as input for the PMT which uses the photoelectric effect to magnify the signal (gain)), in the same way the PMT is wired to the Data Acquisition System (DAQ) in order to process the raw data to give some human-readable numbers. In ideal laboratory conditions, one would expect to get accurate results just by carefully mount the electronics and understand the theory good enough. But nature likes to fool scientists. While making experiments involving fundamental particles, one uses electronic devices that have quantum and technological limita¬tions. One should not miss the effect of variables such as: temperature, moisture, dark current, etc that could impact over our data. In this work, it was explicitly studied the effect of temperature over a spe¬cial kind of data called Light Injection, which is a type of data used for calibration puiposes. Data was taken in two separate time intervals: April and May-July (2015 data already calibrated) which in between was a shutdown period (sometimes a temporal shutdown is done because cooling purposes, repairs in soft- w are/hard ware, etc). Two "thermometers" were used to get the temperature. One was a thermometer placed near the Test Beam IXtector. The other one is a chip built-in the PMT so that it can tell the temperature at all times. The first thermometer was used as a first approximation assuming that everything in the Test Beam IX tec tor was in thermal equilibrium. The second thermometer that was used shows a more realistic distribution of temperatures throughout the time the data was taken. Finally, plots of Gain vs Temperature are shown. These plots, indeed, tell the tempera turn effect over the data that was considered in this work. However, this temperature effect over the data was in principle ignored by the manufacturer because by- dealing w ith big amounts of data, one notices that this effect causes a decrease of less than 1% in gain of the data analyzed. Nevertheless, in high-accurate measurements this effect should not be neglected if one pursuits to get as close as possible to that number that nature tries to hide.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1698
url https://hdl.handle.net/20.500.12390/1698
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883039786631168
spelling Publicationrp04606600Chavarría Rodríguez, Alberto Edgar2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1698In the Neutrino Physics Field, a lot of careful measurements am made such as : cross section measure¬ment, neutrino oscillation, atmospheric neutrino. Etc. In such experimental measurements one has to get the most accurate numbers as possible but in doing so one meets a lot of constraints and variables. Such is the case of the Test Beam detector (a replica of the full MIN HR//A detector where we lest and compare new targets and devices to put them further in the MINERr/A detector). The way we detect some signal in the detector is by using a scintillator material attached to a photomultiplier (when a charged particle passes through the scintillator, this emits a photon of certain spectra and this light works as input for the PMT which uses the photoelectric effect to magnify the signal (gain)), in the same way the PMT is wired to the Data Acquisition System (DAQ) in order to process the raw data to give some human-readable numbers. In ideal laboratory conditions, one would expect to get accurate results just by carefully mount the electronics and understand the theory good enough. But nature likes to fool scientists. While making experiments involving fundamental particles, one uses electronic devices that have quantum and technological limita¬tions. One should not miss the effect of variables such as: temperature, moisture, dark current, etc that could impact over our data. In this work, it was explicitly studied the effect of temperature over a spe¬cial kind of data called Light Injection, which is a type of data used for calibration puiposes. Data was taken in two separate time intervals: April and May-July (2015 data already calibrated) which in between was a shutdown period (sometimes a temporal shutdown is done because cooling purposes, repairs in soft- w are/hard ware, etc). Two "thermometers" were used to get the temperature. One was a thermometer placed near the Test Beam IXtector. The other one is a chip built-in the PMT so that it can tell the temperature at all times. The first thermometer was used as a first approximation assuming that everything in the Test Beam IX tec tor was in thermal equilibrium. The second thermometer that was used shows a more realistic distribution of temperatures throughout the time the data was taken. Finally, plots of Gain vs Temperature are shown. These plots, indeed, tell the tempera turn effect over the data that was considered in this work. However, this temperature effect over the data was in principle ignored by the manufacturer because by- dealing w ith big amounts of data, one notices that this effect causes a decrease of less than 1% in gain of the data analyzed. Nevertheless, in high-accurate measurements this effect should not be neglected if one pursuits to get as close as possible to that number that nature tries to hide.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/NeutrinosDetector Test Beam-1Detector Minerva TB2-1https://purl.org/pe-repo/ocde/ford#1.03.00-1Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectorsinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1698oai:repositorio.concytec.gob.pe:20.500.12390/16982024-05-30 15:39:20.699http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="de597a0c-407f-49d7-a7be-6c0d5ede191b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Calibration updates in Minerva TB2 detector as a reference work for future tunings in neutrino detectors</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <Authors> <Author> <DisplayName>Chavarría Rodríguez, Alberto Edgar</DisplayName> <Person id="rp04606" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional de Ingeniería</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Neutrinos</Keyword> <Keyword>Detector Test Beam</Keyword> <Keyword>Detector Minerva TB2</Keyword> <Abstract>In the Neutrino Physics Field, a lot of careful measurements am made such as : cross section measure¬ment, neutrino oscillation, atmospheric neutrino. Etc. In such experimental measurements one has to get the most accurate numbers as possible but in doing so one meets a lot of constraints and variables. Such is the case of the Test Beam detector (a replica of the full MIN HR//A detector where we lest and compare new targets and devices to put them further in the MINERr/A detector). The way we detect some signal in the detector is by using a scintillator material attached to a photomultiplier (when a charged particle passes through the scintillator, this emits a photon of certain spectra and this light works as input for the PMT which uses the photoelectric effect to magnify the signal (gain)), in the same way the PMT is wired to the Data Acquisition System (DAQ) in order to process the raw data to give some human-readable numbers. In ideal laboratory conditions, one would expect to get accurate results just by carefully mount the electronics and understand the theory good enough. But nature likes to fool scientists. While making experiments involving fundamental particles, one uses electronic devices that have quantum and technological limita¬tions. One should not miss the effect of variables such as: temperature, moisture, dark current, etc that could impact over our data. In this work, it was explicitly studied the effect of temperature over a spe¬cial kind of data called Light Injection, which is a type of data used for calibration puiposes. Data was taken in two separate time intervals: April and May-July (2015 data already calibrated) which in between was a shutdown period (sometimes a temporal shutdown is done because cooling purposes, repairs in soft- w are/hard ware, etc). Two &quot;thermometers&quot; were used to get the temperature. One was a thermometer placed near the Test Beam IXtector. The other one is a chip built-in the PMT so that it can tell the temperature at all times. The first thermometer was used as a first approximation assuming that everything in the Test Beam IX tec tor was in thermal equilibrium. The second thermometer that was used shows a more realistic distribution of temperatures throughout the time the data was taken. Finally, plots of Gain vs Temperature are shown. These plots, indeed, tell the tempera turn effect over the data that was considered in this work. However, this temperature effect over the data was in principle ignored by the manufacturer because by- dealing w ith big amounts of data, one notices that this effect causes a decrease of less than 1% in gain of the data analyzed. Nevertheless, in high-accurate measurements this effect should not be neglected if one pursuits to get as close as possible to that number that nature tries to hide.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.36089
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).