Generalized Archimedean spaces and expansivity

Descripción del Articulo

RM was partially supported by Fondecyt-Concytec contract 100-2018 , HV was partially supported by Universidad Nacional de Ingeniería FC-PF-33-2021 and P-CC-2021-000666 . CAM was partially supported by CNPq -Brazil and the NRF Brain Pool Grant funded by the Korea government (No. 2020H1D3A2A01085417 )...

Descripción completa

Detalles Bibliográficos
Autores: Metzger R., Morales C.A., Villavicencio H.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/3005
Enlace del recurso:https://hdl.handle.net/20.500.12390/3005
https://doi.org/10.1016/j.topol.2021.107831
Nivel de acceso:acceso abierto
Materia:N-expansive
Archimedean
Metric space
https://purl.org/pe-repo/ocde/ford#6.04.04
id CONC_204798cdca78633315ead1dd9b892f82
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/3005
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp08581600rp05889600rp05887600Metzger R.Morales C.A.Villavicencio H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3005https://doi.org/10.1016/j.topol.2021.1078312-s2.0-85113194742RM was partially supported by Fondecyt-Concytec contract 100-2018 , HV was partially supported by Universidad Nacional de Ingeniería FC-PF-33-2021 and P-CC-2021-000666 . CAM was partially supported by CNPq -Brazil and the NRF Brain Pool Grant funded by the Korea government (No. 2020H1D3A2A01085417 ).Roughly speaking, the N-Archimedean spaces for N?N are metric spaces which are the opposite of the classical non-Archimedean ones. We prove that a compact N-Archimedean space has no more than N?1 isolated points, is infinite and (N+1)-Archimedean. Moreover, there are compact (N+1)-Archimedean spaces which are not N-Archimedean for every N?N. Afterwards, we study the dynamics of the expansive systems on N-Archimedean spaces. © 2021 Elsevier B.V.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.Topology and its Applicationsinfo:eu-repo/semantics/openAccessN-expansiveArchimedean-1Metric space-1https://purl.org/pe-repo/ocde/ford#6.04.04-1Generalized Archimedean spaces and expansivityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3005oai:repositorio.concytec.gob.pe:20.500.12390/30052024-05-30 16:13:02.47http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="6bbb187e-16c7-4ab6-af4a-6ee98f7d3802"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Generalized Archimedean spaces and expansivity</Title> <PublishedIn> <Publication> <Title>Topology and its Applications</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.topol.2021.107831</DOI> <SCP-Number>2-s2.0-85113194742</SCP-Number> <Authors> <Author> <DisplayName>Metzger R.</DisplayName> <Person id="rp08581" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales C.A.</DisplayName> <Person id="rp05889" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio H.</DisplayName> <Person id="rp05887" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>N-expansive</Keyword> <Keyword>Archimedean</Keyword> <Keyword>Metric space</Keyword> <Abstract>Roughly speaking, the N-Archimedean spaces for N?N are metric spaces which are the opposite of the classical non-Archimedean ones. We prove that a compact N-Archimedean space has no more than N?1 isolated points, is infinite and (N+1)-Archimedean. Moreover, there are compact (N+1)-Archimedean spaces which are not N-Archimedean for every N?N. Afterwards, we study the dynamics of the expansive systems on N-Archimedean spaces. © 2021 Elsevier B.V.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Generalized Archimedean spaces and expansivity
title Generalized Archimedean spaces and expansivity
spellingShingle Generalized Archimedean spaces and expansivity
Metzger R.
N-expansive
Archimedean
Metric space
https://purl.org/pe-repo/ocde/ford#6.04.04
title_short Generalized Archimedean spaces and expansivity
title_full Generalized Archimedean spaces and expansivity
title_fullStr Generalized Archimedean spaces and expansivity
title_full_unstemmed Generalized Archimedean spaces and expansivity
title_sort Generalized Archimedean spaces and expansivity
author Metzger R.
author_facet Metzger R.
Morales C.A.
Villavicencio H.
author_role author
author2 Morales C.A.
Villavicencio H.
author2_role author
author
dc.contributor.author.fl_str_mv Metzger R.
Morales C.A.
Villavicencio H.
dc.subject.none.fl_str_mv N-expansive
topic N-expansive
Archimedean
Metric space
https://purl.org/pe-repo/ocde/ford#6.04.04
dc.subject.es_PE.fl_str_mv Archimedean
Metric space
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#6.04.04
description RM was partially supported by Fondecyt-Concytec contract 100-2018 , HV was partially supported by Universidad Nacional de Ingeniería FC-PF-33-2021 and P-CC-2021-000666 . CAM was partially supported by CNPq -Brazil and the NRF Brain Pool Grant funded by the Korea government (No. 2020H1D3A2A01085417 ).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/3005
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.topol.2021.107831
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85113194742
url https://hdl.handle.net/20.500.12390/3005
https://doi.org/10.1016/j.topol.2021.107831
identifier_str_mv 2-s2.0-85113194742
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Topology and its Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883119563341824
score 13.072484
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).