Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images

Descripción del Articulo

The authors would like to thank to SEDIMED (a medical diagnosis center company in Peru) who supported with a medical images database. This work was partially funded by the Fondos para la Innovacion, Ciencia y Tecnologia (FINCyT-Peru) under contract 142-10-PITEA-FINCyT and CONCYTEC-Peru with STIC-AmS...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez-Caceres, J, Portugal-Zambrano, C, Beltran-Castanon, C
Formato: objeto de conferencia
Fecha de Publicación:2014
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1222
Enlace del recurso:https://hdl.handle.net/20.500.12390/1222
https://doi.org/10.1109/CBMS.2014.110
Nivel de acceso:acceso abierto
Materia:svm
cbir
pattern recognition
computer aided diagnosis
https://purl.org/pe-repo/ocde/ford#1.02.01
id CONC_163cf5cf20ba7950be1154007065e257
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1222
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
title Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
spellingShingle Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
Gutierrez-Caceres, J
svm
cbir
pattern recognition
computer aided diagnosis
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
title_full Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
title_fullStr Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
title_full_unstemmed Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
title_sort Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images
author Gutierrez-Caceres, J
author_facet Gutierrez-Caceres, J
Portugal-Zambrano, C
Beltran-Castanon, C
author_role author
author2 Portugal-Zambrano, C
Beltran-Castanon, C
author2_role author
author
dc.contributor.author.fl_str_mv Gutierrez-Caceres, J
Portugal-Zambrano, C
Beltran-Castanon, C
dc.subject.none.fl_str_mv svm
topic svm
cbir
pattern recognition
computer aided diagnosis
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_PE.fl_str_mv cbir
pattern recognition
computer aided diagnosis
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description The authors would like to thank to SEDIMED (a medical diagnosis center company in Peru) who supported with a medical images database. This work was partially funded by the Fondos para la Innovacion, Ciencia y Tecnologia (FINCyT-Peru) under contract 142-10-PITEA-FINCyT and CONCYTEC-Peru with STIC-AmSud 2013 under the FERMI project.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1222
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/CBMS.2014.110
dc.identifier.isi.none.fl_str_mv 345222200110
url https://hdl.handle.net/20.500.12390/1222
https://doi.org/10.1109/CBMS.2014.110
identifier_str_mv 345222200110
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE Xplore
publisher.none.fl_str_mv IEEE Xplore
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882993557012480
spelling Publicationrp03485600rp01694500rp00689500Gutierrez-Caceres, JPortugal-Zambrano, CBeltran-Castanon, C2024-05-30T23:13:38Z2024-05-30T23:13:38Z2014https://hdl.handle.net/20.500.12390/1222https://doi.org/10.1109/CBMS.2014.110345222200110The authors would like to thank to SEDIMED (a medical diagnosis center company in Peru) who supported with a medical images database. This work was partially funded by the Fondos para la Innovacion, Ciencia y Tecnologia (FINCyT-Peru) under contract 142-10-PITEA-FINCyT and CONCYTEC-Peru with STIC-AmSud 2013 under the FERMI project.This work presents a model to support medical diagnosis through the classification of abnormality normality in medical brain images, in order to help to specialist as a previous step in the brain pathology diagnosis. Our proposal was incorporated into a content-based image retrieval system, thus we developed a useful tool for radiologists. The first step produces the features vector of MR image using Gabor Filter for the data train and test, then as second step features vector of training data are indexed into CBIR module. The third step makes the training of SVM and as four step the test dataset is classified with the SVM trained. Finally, the result of classification are presented with a set of similar images product of a KNN query. This model was implemented as a software tool with graphical interface. We obtained 94.12% of correct classification. Our medical image dataset is composed of 187 MRI images collected from a medical diagnosis company and selected by medical specialist. The result shows that the proposed model is robust and effective as a software tool to aid support to medical diagnostic.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE Xploreinfo:eu-repo/semantics/openAccesssvmcbir-1pattern recognition-1computer aided diagnosis-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Imagesinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1222oai:repositorio.concytec.gob.pe:20.500.12390/12222024-05-30 15:45:57.036http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="84423681-92c9-4cff-a8b7-7442276ddfa5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Computer Aided Medical Diagnosis Tool to Detect Normal/Abnormal Studies in Digital MR Brain Images</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2014</PublicationDate> <DOI>https://doi.org/10.1109/CBMS.2014.110</DOI> <ISI-Number>345222200110</ISI-Number> <Authors> <Author> <DisplayName>Gutierrez-Caceres, J</DisplayName> <Person id="rp03485" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Portugal-Zambrano, C</DisplayName> <Person id="rp01694" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Beltran-Castanon, C</DisplayName> <Person id="rp00689" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE Xplore</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>svm</Keyword> <Keyword>cbir</Keyword> <Keyword>pattern recognition</Keyword> <Keyword>computer aided diagnosis</Keyword> <Abstract>This work presents a model to support medical diagnosis through the classification of abnormality normality in medical brain images, in order to help to specialist as a previous step in the brain pathology diagnosis. Our proposal was incorporated into a content-based image retrieval system, thus we developed a useful tool for radiologists. The first step produces the features vector of MR image using Gabor Filter for the data train and test, then as second step features vector of training data are indexed into CBIR module. The third step makes the training of SVM and as four step the test dataset is classified with the SVM trained. Finally, the result of classification are presented with a set of similar images product of a KNN query. This model was implemented as a software tool with graphical interface. We obtained 94.12% of correct classification. Our medical image dataset is composed of 187 MRI images collected from a medical diagnosis company and selected by medical specialist. The result shows that the proposed model is robust and effective as a software tool to aid support to medical diagnostic.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).