Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
Descripción del Articulo
In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant mea...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2384 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2384 https://doi.org/10.1515/forum-2020-0023 |
| Nivel de acceso: | acceso abierto |
| Materia: | invariant measures correlation dimension Full-shift over an uncountable alphabet generalized fractal dimensions http://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
CONC_053d125ce2772feabb77970b2035b708 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2384 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| title |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| spellingShingle |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior Carvalho, Silas L. invariant measures correlation dimension Full-shift over an uncountable alphabet generalized fractal dimensions http://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| title_full |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| title_fullStr |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| title_full_unstemmed |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| title_sort |
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior |
| author |
Carvalho, Silas L. |
| author_facet |
Carvalho, Silas L. Condori, Alexander |
| author_role |
author |
| author2 |
Condori, Alexander |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Carvalho, Silas L. Condori, Alexander |
| dc.subject.none.fl_str_mv |
invariant measures |
| topic |
invariant measures correlation dimension Full-shift over an uncountable alphabet generalized fractal dimensions http://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.es_PE.fl_str_mv |
correlation dimension Full-shift over an uncountable alphabet generalized fractal dimensions |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2384 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1515/forum-2020-0023 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85100073370 |
| url |
https://hdl.handle.net/20.500.12390/2384 https://doi.org/10.1515/forum-2020-0023 |
| identifier_str_mv |
2-s2.0-85100073370 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Forum Mathematicum |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
De Gruyter Open Ltd |
| publisher.none.fl_str_mv |
De Gruyter Open Ltd |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883017112223744 |
| spelling |
Publicationrp05823600rp05822600Carvalho, Silas L.Condori, Alexander2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2384https://doi.org/10.1515/forum-2020-00232-s2.0-85100073370In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengDe Gruyter Open LtdForum Mathematicuminfo:eu-repo/semantics/openAccessinvariant measurescorrelation dimension-1Full-shift over an uncountable alphabet-1generalized fractal dimensions-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behaviorinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2384oai:repositorio.concytec.gob.pe:20.500.12390/23842024-05-30 15:24:29.653http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b06ab8c5-a122-4162-866c-1ce9bf97d001"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior</Title> <PublishedIn> <Publication> <Title>Forum Mathematicum</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1515/forum-2020-0023</DOI> <SCP-Number>2-s2.0-85100073370</SCP-Number> <Authors> <Author> <DisplayName>Carvalho, Silas L.</DisplayName> <Person id="rp05823" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Alexander</DisplayName> <Person id="rp05822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>De Gruyter Open Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>invariant measures</Keyword> <Keyword>correlation dimension</Keyword> <Keyword>Full-shift over an uncountable alphabet</Keyword> <Keyword>generalized fractal dimensions</Keyword> <Abstract>In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).