Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior

Descripción del Articulo

In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant mea...

Descripción completa

Detalles Bibliográficos
Autores: Carvalho, Silas L., Condori, Alexander
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2384
Enlace del recurso:https://hdl.handle.net/20.500.12390/2384
https://doi.org/10.1515/forum-2020-0023
Nivel de acceso:acceso abierto
Materia:invariant measures
correlation dimension
Full-shift over an uncountable alphabet
generalized fractal dimensions
http://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_053d125ce2772feabb77970b2035b708
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2384
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
title Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
spellingShingle Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
Carvalho, Silas L.
invariant measures
correlation dimension
Full-shift over an uncountable alphabet
generalized fractal dimensions
http://purl.org/pe-repo/ocde/ford#2.02.03
title_short Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
title_full Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
title_fullStr Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
title_full_unstemmed Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
title_sort Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
author Carvalho, Silas L.
author_facet Carvalho, Silas L.
Condori, Alexander
author_role author
author2 Condori, Alexander
author2_role author
dc.contributor.author.fl_str_mv Carvalho, Silas L.
Condori, Alexander
dc.subject.none.fl_str_mv invariant measures
topic invariant measures
correlation dimension
Full-shift over an uncountable alphabet
generalized fractal dimensions
http://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv correlation dimension
Full-shift over an uncountable alphabet
generalized fractal dimensions
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.03
description In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2384
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1515/forum-2020-0023
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85100073370
url https://hdl.handle.net/20.500.12390/2384
https://doi.org/10.1515/forum-2020-0023
identifier_str_mv 2-s2.0-85100073370
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Forum Mathematicum
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv De Gruyter Open Ltd
publisher.none.fl_str_mv De Gruyter Open Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883017112223744
spelling Publicationrp05823600rp05822600Carvalho, Silas L.Condori, Alexander2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2384https://doi.org/10.1515/forum-2020-00232-s2.0-85100073370In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengDe Gruyter Open LtdForum Mathematicuminfo:eu-repo/semantics/openAccessinvariant measurescorrelation dimension-1Full-shift over an uncountable alphabet-1generalized fractal dimensions-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behaviorinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2384oai:repositorio.concytec.gob.pe:20.500.12390/23842024-05-30 15:24:29.653http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b06ab8c5-a122-4162-866c-1ce9bf97d001"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior</Title> <PublishedIn> <Publication> <Title>Forum Mathematicum</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1515/forum-2020-0023</DOI> <SCP-Number>2-s2.0-85100073370</SCP-Number> <Authors> <Author> <DisplayName>Carvalho, Silas L.</DisplayName> <Person id="rp05823" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori, Alexander</DisplayName> <Person id="rp05822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>De Gruyter Open Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>invariant measures</Keyword> <Keyword>correlation dimension</Keyword> <Keyword>Full-shift over an uncountable alphabet</Keyword> <Keyword>generalized fractal dimensions</Keyword> <Abstract>In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire&apos;s sense) invariant measure has, for each q&gt;0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q&gt;1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q&gt;1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).