Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks

Descripción del Articulo

ACKNOWLEDGMENT Franklin Alfredo Cabezas Huerta would like to thank the support provided by the CER – UNI and also express special thanks to the National Fund for Scientific and Technological Development (FONDECYT – PERU) for the scholarship awarded to do PhD studies in Science with mention in Energe...

Descripción completa

Detalles Bibliográficos
Autores: Huerta F.A.C., Soldevilla F.R.C., Delgado A., Carbajal C.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2297
Enlace del recurso:https://hdl.handle.net/20.500.12390/2297
https://doi.org/10.1109/SHIRCON48091.2019.9024856
Nivel de acceso:acceso abierto
Materia:solar radiation
Artificial Neural Networks
astronomical equations
estimated values
Solar energy systems
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_04545b91734ebc3418e3a06323846df8
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2297
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
title Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
spellingShingle Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
Huerta F.A.C.
solar radiation
Artificial Neural Networks
astronomical equations
estimated values
Solar energy systems
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
title_full Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
title_fullStr Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
title_full_unstemmed Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
title_sort Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks
author Huerta F.A.C.
author_facet Huerta F.A.C.
Soldevilla F.R.C.
Delgado A.
Carbajal C.
author_role author
author2 Soldevilla F.R.C.
Delgado A.
Carbajal C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Huerta F.A.C.
Soldevilla F.R.C.
Delgado A.
Carbajal C.
dc.subject.none.fl_str_mv solar radiation
topic solar radiation
Artificial Neural Networks
astronomical equations
estimated values
Solar energy systems
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Artificial Neural Networks
astronomical equations
estimated values
Solar energy systems
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description ACKNOWLEDGMENT Franklin Alfredo Cabezas Huerta would like to thank the support provided by the CER – UNI and also express special thanks to the National Fund for Scientific and Technological Development (FONDECYT – PERU) for the scholarship awarded to do PhD studies in Science with mention in Energetics in the National University of Engineering.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2297
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/SHIRCON48091.2019.9024856
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85082388289
url https://hdl.handle.net/20.500.12390/2297
https://doi.org/10.1109/SHIRCON48091.2019.9024856
identifier_str_mv 2-s2.0-85082388289
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv SHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175618768404480
spelling Publicationrp05437600rp05438600rp05436600rp05435600Huerta F.A.C.Soldevilla F.R.C.Delgado A.Carbajal C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2297https://doi.org/10.1109/SHIRCON48091.2019.90248562-s2.0-85082388289ACKNOWLEDGMENT Franklin Alfredo Cabezas Huerta would like to thank the support provided by the CER – UNI and also express special thanks to the National Fund for Scientific and Technological Development (FONDECYT – PERU) for the scholarship awarded to do PhD studies in Science with mention in Energetics in the National University of Engineering.Solar energy systems use solar radiation to obtain useful energy, so to design and implement these systems anywhere on the surface of the earth it is very important to know the value of the incident solar radiation in the selected place. This radiation is usually obtained from meters such as pyranometers, pyrheliometers or actinographs from meteorological stations located near the place. As these instruments are expensive and usually have high measurement errors (5-9%), it is necessary to estimate the radiation in an optimal way. In this work, two mathematical methods are used to estimate the value of incident solar radiation on horizontal and tilted surfaces. The methods are: Method based on astronomical equations and method based on Artificial Neural Networks. The case study was conducted for the geographical location of the National University of Engineering (Lima, Peru). A database of meteorological variables measured for ten years and averaged every month was used to compare their measurements with the estimated results of the proposed mathematical methods. The results revealed that the estimated values of global solar radiation when applying the astronomical method differs on average 9% with respect to that provided by the database and 6% when applying Artificial Neural Networks. © 2019 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.SHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conferenceinfo:eu-repo/semantics/openAccesssolar radiationArtificial Neural Networks-1astronomical equations-1estimated values-1Solar energy systems-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2297oai:repositorio.concytec.gob.pe:20.500.12390/22972024-05-30 16:06:59.029http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="7ec41e4a-2981-41c9-b447-4fdf99e69fd6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Optimal Estimation of Solar Radiation on Flat Surfaces for the Design of Energy Systems using Artificial Neural Networks</Title> <PublishedIn> <Publication> <Title>SHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/SHIRCON48091.2019.9024856</DOI> <SCP-Number>2-s2.0-85082388289</SCP-Number> <Authors> <Author> <DisplayName>Huerta F.A.C.</DisplayName> <Person id="rp05437" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Soldevilla F.R.C.</DisplayName> <Person id="rp05438" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Delgado A.</DisplayName> <Person id="rp05436" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carbajal C.</DisplayName> <Person id="rp05435" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>solar radiation</Keyword> <Keyword>Artificial Neural Networks</Keyword> <Keyword>astronomical equations</Keyword> <Keyword>estimated values</Keyword> <Keyword>Solar energy systems</Keyword> <Abstract>Solar energy systems use solar radiation to obtain useful energy, so to design and implement these systems anywhere on the surface of the earth it is very important to know the value of the incident solar radiation in the selected place. This radiation is usually obtained from meters such as pyranometers, pyrheliometers or actinographs from meteorological stations located near the place. As these instruments are expensive and usually have high measurement errors (5-9%), it is necessary to estimate the radiation in an optimal way. In this work, two mathematical methods are used to estimate the value of incident solar radiation on horizontal and tilted surfaces. The methods are: Method based on astronomical equations and method based on Artificial Neural Networks. The case study was conducted for the geographical location of the National University of Engineering (Lima, Peru). A database of meteorological variables measured for ten years and averaged every month was used to compare their measurements with the estimated results of the proposed mathematical methods. The results revealed that the estimated values of global solar radiation when applying the astronomical method differs on average 9% with respect to that provided by the database and 6% when applying Artificial Neural Networks. © 2019 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).