Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
Descripción del Articulo
Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2591 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2591 https://doi.org/10.1007/978-3-030-46140-9_20 |
| Nivel de acceso: | acceso abierto |
| Materia: | Transfer Learning Language Model Natural Language Processing Sentiment Analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
CONC_02d794e6a79b593b34afe0a565255556 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2591 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp06670600rp06669600Palomino D.Ochoa-Luna J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2591https://doi.org/10.1007/978-3-030-46140-9_202-s2.0-85084819494Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessTransfer LearningLanguage Model-1Natural Language Processing-1Sentiment Analysis-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Studyinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2591oai:repositorio.concytec.gob.pe:20.500.12390/25912024-05-30 16:09:37.24http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="15004511-aa06-4f23-921e-e19c46f3f3e2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-46140-9_20</DOI> <SCP-Number>2-s2.0-85084819494</SCP-Number> <Authors> <Author> <DisplayName>Palomino D.</DisplayName> <Person id="rp06670" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ochoa-Luna J.</DisplayName> <Person id="rp06669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Transfer Learning</Keyword> <Keyword>Language Model</Keyword> <Keyword>Natural Language Processing</Keyword> <Keyword>Sentiment Analysis</Keyword> <Abstract>Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| title |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| spellingShingle |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study Palomino D. Transfer Learning Language Model Natural Language Processing Sentiment Analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| title_full |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| title_fullStr |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| title_full_unstemmed |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| title_sort |
Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study |
| author |
Palomino D. |
| author_facet |
Palomino D. Ochoa-Luna J. |
| author_role |
author |
| author2 |
Ochoa-Luna J. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Palomino D. Ochoa-Luna J. |
| dc.subject.none.fl_str_mv |
Transfer Learning |
| topic |
Transfer Learning Language Model Natural Language Processing Sentiment Analysis http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.es_PE.fl_str_mv |
Language Model Natural Language Processing Sentiment Analysis |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2591 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-46140-9_20 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85084819494 |
| url |
https://hdl.handle.net/20.500.12390/2591 https://doi.org/10.1007/978-3-030-46140-9_20 |
| identifier_str_mv |
2-s2.0-85084819494 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Communications in Computer and Information Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883056491495424 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).