Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study

Descripción del Articulo

Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language...

Descripción completa

Detalles Bibliográficos
Autores: Palomino D., Ochoa-Luna J.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2591
Enlace del recurso:https://hdl.handle.net/20.500.12390/2591
https://doi.org/10.1007/978-3-030-46140-9_20
Nivel de acceso:acceso abierto
Materia:Transfer Learning
Language Model
Natural Language Processing
Sentiment Analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_02d794e6a79b593b34afe0a565255556
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2591
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp06670600rp06669600Palomino D.Ochoa-Luna J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2591https://doi.org/10.1007/978-3-030-46140-9_202-s2.0-85084819494Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringerCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessTransfer LearningLanguage Model-1Natural Language Processing-1Sentiment Analysis-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Studyinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2591oai:repositorio.concytec.gob.pe:20.500.12390/25912024-05-30 16:09:37.24http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="15004511-aa06-4f23-921e-e19c46f3f3e2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-46140-9_20</DOI> <SCP-Number>2-s2.0-85084819494</SCP-Number> <Authors> <Author> <DisplayName>Palomino D.</DisplayName> <Person id="rp06670" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ochoa-Luna J.</DisplayName> <Person id="rp06669" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Transfer Learning</Keyword> <Keyword>Language Model</Keyword> <Keyword>Natural Language Processing</Keyword> <Keyword>Sentiment Analysis</Keyword> <Abstract>Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
title Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
spellingShingle Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
Palomino D.
Transfer Learning
Language Model
Natural Language Processing
Sentiment Analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
title_full Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
title_fullStr Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
title_full_unstemmed Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
title_sort Spanish Sentiment Analysis Using Universal Language Model Fine-Tuning: A Detailed Case of Study
author Palomino D.
author_facet Palomino D.
Ochoa-Luna J.
author_role author
author2 Ochoa-Luna J.
author2_role author
dc.contributor.author.fl_str_mv Palomino D.
Ochoa-Luna J.
dc.subject.none.fl_str_mv Transfer Learning
topic Transfer Learning
Language Model
Natural Language Processing
Sentiment Analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Language Model
Natural Language Processing
Sentiment Analysis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Transfer Learning has emerged as one of the main image classification techniques for reusing architectures and weights trained on big datasets so as to improve small and specific classification tasks. In Natural Language Processing, a similar effect is obtained by reusing and transferring a language model. In particular, the Universal Language Fine-Tuning (ULMFiT) algorithm has proven to have an impressive performance on several English text classification tasks. In this paper, we aim at improving current state-of-the-art algorithms for Spanish Sentiment Analysis of short texts. In order to do so, we have adapted a ULMFiT algorithm to this setting. Experimental results on benchmark datasets show the potential of our approach. © Springer Nature Switzerland AG 2020.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2591
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-46140-9_20
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85084819494
url https://hdl.handle.net/20.500.12390/2591
https://doi.org/10.1007/978-3-030-46140-9_20
identifier_str_mv 2-s2.0-85084819494
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Communications in Computer and Information Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883056491495424
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).