The Conjunction of Deterministic and Probabilistic Events in Realistic Scenarios of Outdoor Infections

Descripción del Articulo

The aim of this paper is the derivation of an robust formalism that calculates the so-called social distancing as already determined in the ongoing Corona Virus Disease 2019 (Covid-19 in short) being established in various places in the world between 1.5 m and 2.5 m. This would constitutes a critic...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1684
Enlace del recurso:https://hdl.handle.net/20.500.13067/1684
https://doi.org/10.1007/978-3-030-92163-7_21
Nivel de acceso:acceso restringido
Materia:COVID-19
Weiss probabilistic equation
Outdoor infection
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The aim of this paper is the derivation of an robust formalism that calculates the so-called social distancing as already determined in the ongoing Corona Virus Disease 2019 (Covid-19 in short) being established in various places in the world between 1.5 m and 2.5 m. This would constitutes a critic space of separation among people in the which aerosols might not be effective to infect healthy people. In addition to wearing masks and face protection, the social distancing appears to be critic to keep people far of infections and consequences produced from it. In this way, the paper has opted by the incorporation of a full deterministic model inside the equation of Weiss, by the which it fits well to the action of outdoor infection when wind manages the direction and displacement of aerosols in space. Thus, while a deterministic approach targets to propose a risk’s probability, a probabilistic scenario established by Weiss in conjunction to the deterministic events would yield an approximated model of outdoor infection when there is a continuous source of infected aerosols that are moving through air in according to a wind velocity. The simulations have shown that the present approach is valid to some extent in the sense that only the 1D case is considered. The model can be extended with the implementation of physical variables that can attenuate the presence of disturbs and random noise that minimizes the effectiveness of present proposal.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).