Chilli Dryness and Ripening Stages Assessment Using Machine Vision

Descripción del Articulo

The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are comple...

Descripción completa

Detalles Bibliográficos
Autores: Sajjan, Mahantesh, Kulkarni, Lingangouda, Anami, Basavaraj S., Gaddagimath, Nijagunadev B., Rodríguez Baca, Liset Sulay
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3452
Enlace del recurso:https://hdl.handle.net/20.500.13067/3452
https://doi.org/10.5815/ijigsp.2023.06.06
Nivel de acceso:acceso abierto
Materia:Chilli
Machine vision
Ripening
Dryness identification
Color features
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_92b6554a9e2e6fd26013b39b041f15a8
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3452
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Sajjan, MahanteshKulkarni, LingangoudaAnami, Basavaraj S.Gaddagimath, Nijagunadev B.Rodríguez Baca, Liset Sulay2024-10-31T21:34:59Z2024-10-31T21:34:59Z2023https://hdl.handle.net/20.500.13067/3452International Journal of Image, Graphics and Signal Processinghttps://doi.org/10.5815/ijigsp.2023.06.06The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are complex and time consuming. Chilli dryness and ripeness prediction at post-harvest stage by non-destructive machine vision technologies have potential of fair valuation for chilli produce for the chilli stalk holders. Chilli pericarp color values calculated from RGB, HSV and CIE-L*a*b* color space, texture properties using edge-wrinkles parameters are described by histogram of oriented gradients (HOG). LDA(linear discriminant analysis), RF(random-forest) and SVM(support vector machine) classifiers are analysed for performance accuracy for chilli dryness identification and chilli ripening stages using the machine vision. The chilli dryness identification accuracies of 83%, 85.4% and 83.5% are achieved using chilli color and HOG features with LDA, Random Forest and SVM classifiers respectively. Chilli ripening stage identification with combined chilli feature set of {color, HOG, SURF and LBP} using Support Vector Machine (SVM) average classifier accuracy is 90.56% across four chilli ripening stages. This work is simple with rapid, intelligent and high accuracy of chilli dryness and ripening identification by using machine vision approach has prospect in real-time chilli quality monitoring and grading. The results yielded were promising quality measurements compared previous studies.application/pdfengMECS Pressinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/AUTONOMA1566780reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAChilliMachine visionRipeningDryness identificationColor featureshttps://purl.org/pe-repo/ocde/ford#2.02.04Chilli Dryness and Ripening Stages Assessment Using Machine Visioninfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINAL184.pdf184.pdfArtículoapplication/pdf991572http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/1/184.pdf2a749db676479ec757d779ea2a87fe2dMD51TEXT184.pdf.txt184.pdf.txtExtracted texttext/plain41950http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/3/184.pdf.txt2df2372e97e8eba8487f8caa3074b6fbMD53THUMBNAIL184.pdf.jpg184.pdf.jpgGenerated Thumbnailimage/jpeg7003http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/4/184.pdf.jpg53dd47303364556452fffd1c97029ec1MD5420.500.13067/3452oai:repositorio.autonoma.edu.pe:20.500.13067/34522025-01-06 16:39:56.942Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Chilli Dryness and Ripening Stages Assessment Using Machine Vision
title Chilli Dryness and Ripening Stages Assessment Using Machine Vision
spellingShingle Chilli Dryness and Ripening Stages Assessment Using Machine Vision
Sajjan, Mahantesh
Chilli
Machine vision
Ripening
Dryness identification
Color features
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Chilli Dryness and Ripening Stages Assessment Using Machine Vision
title_full Chilli Dryness and Ripening Stages Assessment Using Machine Vision
title_fullStr Chilli Dryness and Ripening Stages Assessment Using Machine Vision
title_full_unstemmed Chilli Dryness and Ripening Stages Assessment Using Machine Vision
title_sort Chilli Dryness and Ripening Stages Assessment Using Machine Vision
author Sajjan, Mahantesh
author_facet Sajjan, Mahantesh
Kulkarni, Lingangouda
Anami, Basavaraj S.
Gaddagimath, Nijagunadev B.
Rodríguez Baca, Liset Sulay
author_role author
author2 Kulkarni, Lingangouda
Anami, Basavaraj S.
Gaddagimath, Nijagunadev B.
Rodríguez Baca, Liset Sulay
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Sajjan, Mahantesh
Kulkarni, Lingangouda
Anami, Basavaraj S.
Gaddagimath, Nijagunadev B.
Rodríguez Baca, Liset Sulay
dc.subject.es_PE.fl_str_mv Chilli
Machine vision
Ripening
Dryness identification
Color features
topic Chilli
Machine vision
Ripening
Dryness identification
Color features
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are complex and time consuming. Chilli dryness and ripeness prediction at post-harvest stage by non-destructive machine vision technologies have potential of fair valuation for chilli produce for the chilli stalk holders. Chilli pericarp color values calculated from RGB, HSV and CIE-L*a*b* color space, texture properties using edge-wrinkles parameters are described by histogram of oriented gradients (HOG). LDA(linear discriminant analysis), RF(random-forest) and SVM(support vector machine) classifiers are analysed for performance accuracy for chilli dryness identification and chilli ripening stages using the machine vision. The chilli dryness identification accuracies of 83%, 85.4% and 83.5% are achieved using chilli color and HOG features with LDA, Random Forest and SVM classifiers respectively. Chilli ripening stage identification with combined chilli feature set of {color, HOG, SURF and LBP} using Support Vector Machine (SVM) average classifier accuracy is 90.56% across four chilli ripening stages. This work is simple with rapid, intelligent and high accuracy of chilli dryness and ripening identification by using machine vision approach has prospect in real-time chilli quality monitoring and grading. The results yielded were promising quality measurements compared previous studies.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-10-31T21:34:59Z
dc.date.available.none.fl_str_mv 2024-10-31T21:34:59Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3452
dc.identifier.journal.es_PE.fl_str_mv International Journal of Image, Graphics and Signal Processing
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.5815/ijigsp.2023.06.06
url https://hdl.handle.net/20.500.13067/3452
https://doi.org/10.5815/ijigsp.2023.06.06
identifier_str_mv International Journal of Image, Graphics and Signal Processing
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MECS Press
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 15
dc.source.issue.es_PE.fl_str_mv 6
dc.source.beginpage.es_PE.fl_str_mv 67
dc.source.endpage.es_PE.fl_str_mv 80
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/1/184.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/3/184.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/4/184.pdf.jpg
bitstream.checksum.fl_str_mv 9243398ff393db1861c890baeaeee5f9
2a749db676479ec757d779ea2a87fe2d
2df2372e97e8eba8487f8caa3074b6fb
53dd47303364556452fffd1c97029ec1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915280398680064
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).