Chilli Dryness and Ripening Stages Assessment Using Machine Vision
Descripción del Articulo
The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are comple...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3452 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3452 https://doi.org/10.5815/ijigsp.2023.06.06 |
Nivel de acceso: | acceso abierto |
Materia: | Chilli Machine vision Ripening Dryness identification Color features https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_92b6554a9e2e6fd26013b39b041f15a8 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3452 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Sajjan, MahanteshKulkarni, LingangoudaAnami, Basavaraj S.Gaddagimath, Nijagunadev B.Rodríguez Baca, Liset Sulay2024-10-31T21:34:59Z2024-10-31T21:34:59Z2023https://hdl.handle.net/20.500.13067/3452International Journal of Image, Graphics and Signal Processinghttps://doi.org/10.5815/ijigsp.2023.06.06The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are complex and time consuming. Chilli dryness and ripeness prediction at post-harvest stage by non-destructive machine vision technologies have potential of fair valuation for chilli produce for the chilli stalk holders. Chilli pericarp color values calculated from RGB, HSV and CIE-L*a*b* color space, texture properties using edge-wrinkles parameters are described by histogram of oriented gradients (HOG). LDA(linear discriminant analysis), RF(random-forest) and SVM(support vector machine) classifiers are analysed for performance accuracy for chilli dryness identification and chilli ripening stages using the machine vision. The chilli dryness identification accuracies of 83%, 85.4% and 83.5% are achieved using chilli color and HOG features with LDA, Random Forest and SVM classifiers respectively. Chilli ripening stage identification with combined chilli feature set of {color, HOG, SURF and LBP} using Support Vector Machine (SVM) average classifier accuracy is 90.56% across four chilli ripening stages. This work is simple with rapid, intelligent and high accuracy of chilli dryness and ripening identification by using machine vision approach has prospect in real-time chilli quality monitoring and grading. The results yielded were promising quality measurements compared previous studies.application/pdfengMECS Pressinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/AUTONOMA1566780reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAChilliMachine visionRipeningDryness identificationColor featureshttps://purl.org/pe-repo/ocde/ford#2.02.04Chilli Dryness and Ripening Stages Assessment Using Machine Visioninfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINAL184.pdf184.pdfArtículoapplication/pdf991572http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/1/184.pdf2a749db676479ec757d779ea2a87fe2dMD51TEXT184.pdf.txt184.pdf.txtExtracted texttext/plain41950http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/3/184.pdf.txt2df2372e97e8eba8487f8caa3074b6fbMD53THUMBNAIL184.pdf.jpg184.pdf.jpgGenerated Thumbnailimage/jpeg7003http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/4/184.pdf.jpg53dd47303364556452fffd1c97029ec1MD5420.500.13067/3452oai:repositorio.autonoma.edu.pe:20.500.13067/34522025-01-06 16:39:56.942Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
title |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
spellingShingle |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision Sajjan, Mahantesh Chilli Machine vision Ripening Dryness identification Color features https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
title_full |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
title_fullStr |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
title_full_unstemmed |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
title_sort |
Chilli Dryness and Ripening Stages Assessment Using Machine Vision |
author |
Sajjan, Mahantesh |
author_facet |
Sajjan, Mahantesh Kulkarni, Lingangouda Anami, Basavaraj S. Gaddagimath, Nijagunadev B. Rodríguez Baca, Liset Sulay |
author_role |
author |
author2 |
Kulkarni, Lingangouda Anami, Basavaraj S. Gaddagimath, Nijagunadev B. Rodríguez Baca, Liset Sulay |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Sajjan, Mahantesh Kulkarni, Lingangouda Anami, Basavaraj S. Gaddagimath, Nijagunadev B. Rodríguez Baca, Liset Sulay |
dc.subject.es_PE.fl_str_mv |
Chilli Machine vision Ripening Dryness identification Color features |
topic |
Chilli Machine vision Ripening Dryness identification Color features https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The quality of chilli is prime concern for farmers, traders and chilli processing industries. The effective determination of chilli dryness and ripening stages are important factors in determining its quality and chilli shelf life with respect to manual estimation of ripening/dryness that are complex and time consuming. Chilli dryness and ripeness prediction at post-harvest stage by non-destructive machine vision technologies have potential of fair valuation for chilli produce for the chilli stalk holders. Chilli pericarp color values calculated from RGB, HSV and CIE-L*a*b* color space, texture properties using edge-wrinkles parameters are described by histogram of oriented gradients (HOG). LDA(linear discriminant analysis), RF(random-forest) and SVM(support vector machine) classifiers are analysed for performance accuracy for chilli dryness identification and chilli ripening stages using the machine vision. The chilli dryness identification accuracies of 83%, 85.4% and 83.5% are achieved using chilli color and HOG features with LDA, Random Forest and SVM classifiers respectively. Chilli ripening stage identification with combined chilli feature set of {color, HOG, SURF and LBP} using Support Vector Machine (SVM) average classifier accuracy is 90.56% across four chilli ripening stages. This work is simple with rapid, intelligent and high accuracy of chilli dryness and ripening identification by using machine vision approach has prospect in real-time chilli quality monitoring and grading. The results yielded were promising quality measurements compared previous studies. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-10-31T21:34:59Z |
dc.date.available.none.fl_str_mv |
2024-10-31T21:34:59Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3452 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Image, Graphics and Signal Processing |
dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.5815/ijigsp.2023.06.06 |
url |
https://hdl.handle.net/20.500.13067/3452 https://doi.org/10.5815/ijigsp.2023.06.06 |
identifier_str_mv |
International Journal of Image, Graphics and Signal Processing |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MECS Press |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
15 |
dc.source.issue.es_PE.fl_str_mv |
6 |
dc.source.beginpage.es_PE.fl_str_mv |
67 |
dc.source.endpage.es_PE.fl_str_mv |
80 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/1/184.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/3/184.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3452/4/184.pdf.jpg |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 2a749db676479ec757d779ea2a87fe2d 2df2372e97e8eba8487f8caa3074b6fb 53dd47303364556452fffd1c97029ec1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915280398680064 |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).