Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic
Descripción del Articulo
Based in the fact that ongoing pandemic is caused by a kind of disorder, this paper employs the concept of Shannon entropy to model data of infections by Covid-19. The usage of this represents a proposal as a type of artificial intelligence that might be used in advanced softwares to perform instant...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1817 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1817 https://doi.org/10.1109/TransAI51903.2021.00016 |
Nivel de acceso: | acceso restringido |
Materia: | COVID-19 Correlation Pandemics Entropy Software Data models Proposals https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_81e632531dd5030bc005ad75e0d3631c |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1817 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-04-29T20:50:29Z2022-04-29T20:50:29Z2021-10-18Nieto-Chaupis, H. (2021). Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 45-46). IEEE.978-1-6654-3412-6https://hdl.handle.net/20.500.13067/18172021 Third International Conference on Transdisciplinary AI (TransAI)https://doi.org/10.1109/TransAI51903.2021.00016Based in the fact that ongoing pandemic is caused by a kind of disorder, this paper employs the concept of Shannon entropy to model data of infections by Covid-19. The usage of this represents a proposal as a type of artificial intelligence that might be used in advanced softwares to perform instantaneous measurements of new infections. The presented theory is applied to the case of UK data, yielding an interesting matching. Therefore, it is seen that waves of pandemics can be explained in terms of apparition of strains and entropy.application/pdfengUniversidad Autónoma del PerúPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA4546reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMACOVID-19CorrelationPandemicsEntropySoftwareData modelsProposalshttps://purl.org/pe-repo/ocde/ford#2.02.04Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemicinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125747960&doi=10.1109%2fTransAI51903.2021.00016&partnerID=40LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdf.txtTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdf.txtExtracted texttext/plain576http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/4/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdf.txt58a852ea2af14e480e4a6762f78134c6MD54THUMBNAILTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdf.jpgTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdf.jpgGenerated Thumbnailimage/jpeg5735http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/5/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdf.jpg175318c803481a71a6f7814afab273a7MD55ORIGINALTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdfTheoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic.pdfVer fuenteapplication/pdf98381http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/3/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdfcdb444a5065df777998be887b52a6503MD5320.500.13067/1817oai:repositorio.autonoma.edu.pe:20.500.13067/18172022-04-30 03:00:21.451Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
title |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
spellingShingle |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic Nieto-Chaupis, Huber COVID-19 Correlation Pandemics Entropy Software Data models Proposals https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
title_full |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
title_fullStr |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
title_full_unstemmed |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
title_sort |
Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
COVID-19 Correlation Pandemics Entropy Software Data models Proposals |
topic |
COVID-19 Correlation Pandemics Entropy Software Data models Proposals https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Based in the fact that ongoing pandemic is caused by a kind of disorder, this paper employs the concept of Shannon entropy to model data of infections by Covid-19. The usage of this represents a proposal as a type of artificial intelligence that might be used in advanced softwares to perform instantaneous measurements of new infections. The presented theory is applied to the case of UK data, yielding an interesting matching. Therefore, it is seen that waves of pandemics can be explained in terms of apparition of strains and entropy. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-04-29T20:50:29Z |
dc.date.available.none.fl_str_mv |
2022-04-29T20:50:29Z |
dc.date.issued.fl_str_mv |
2021-10-18 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2021). Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 45-46). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-6654-3412-6 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1817 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 Third International Conference on Transdisciplinary AI (TransAI) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/TransAI51903.2021.00016 |
identifier_str_mv |
Nieto-Chaupis, H. (2021). Theoretical Artificial Intelligence Based on Shannon Entropy to Identify Strains in Covid-19 Pandemic. In 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 45-46). IEEE. 978-1-6654-3412-6 2021 Third International Conference on Transdisciplinary AI (TransAI) |
url |
https://hdl.handle.net/20.500.13067/1817 https://doi.org/10.1109/TransAI51903.2021.00016 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125747960&doi=10.1109%2fTransAI51903.2021.00016&partnerID=40 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Autónoma del Perú |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
45 |
dc.source.endpage.es_PE.fl_str_mv |
46 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/4/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/5/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1817/3/Theoretical%20Artificial%20Intelligence%20Based%20on%20Shannon%20Entropy%20to%20Identify%20Strains%20in%20Covid-19%20Pandemic.pdf |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 58a852ea2af14e480e4a6762f78134c6 175318c803481a71a6f7814afab273a7 cdb444a5065df777998be887b52a6503 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399984016293888 |
score |
13.93557 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).