Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections
Descripción del Articulo
It is well-known that Coronavirus has been propagated due to human activities mainly based at intercontinental flights. Thus, in the first months of 2020, most new countries have already presented peaks in the number of infections, so that airports and borders were closed. With the social restrictio...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1814 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1814 https://doi.org/10.1109/ICEIB53692.2021.9686434 |
Nivel de acceso: | acceso restringido |
Materia: | COVID-19 Pandemics Fitting Europe Big Data Airports Entropy https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_7cf292de65d9945daa23cd7401cc40fc |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1814 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2022-04-29T17:58:08Z2022-04-29T17:58:08Z2022-01-31Nieto-Chaupis, H. (2021). Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections. In 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) (pp. 298-301). IEEE.978-1-6654-3755-4https://hdl.handle.net/20.500.13067/18142021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB)https://doi.org/10.1109/ICEIB53692.2021.9686434It is well-known that Coronavirus has been propagated due to human activities mainly based at intercontinental flights. Thus, in the first months of 2020, most new countries have already presented peaks in the number of infections, so that airports and borders were closed. With the social restrictions imposed along the beginning of second semester of 2020, the curve of cases of infections has exhibited to be flat in comparison to the beginning of 2020. Therefore, the human activities of end-of-year 2020 have caused againg peaks as the second wave of the pandemic in most countries. So far, by the end of 2021, most countries particularly located at Europe, are exhibiting the fourth wave. In this paper, the entropy of Shannon is considered as inherent mechanism and responsible of waves and large peaks of the number of infections. Modelling of data, the results of this paper suggest the inherent presence of a global entropy due to the transfer of randomness between neighboring countries.application/pdfengUniversidad Autónoma del PerúPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA298301reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMACOVID-19PandemicsFittingEuropeBig DataAirportsEntropyhttps://purl.org/pe-repo/ocde/ford#2.02.04Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infectionsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125839956&doi=10.1109%2fICEIB53692.2021.9686434&partnerID=40TEXTPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdf.txtPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdf.txtExtracted texttext/plain600http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/4/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdf.txt5431eb06c392c97624fd8b8e3580b219MD54THUMBNAILPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdf.jpgPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdf.jpgGenerated Thumbnailimage/jpeg5827http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/5/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdf.jpg3617ad2c4a79e882e4fe56602a293ed1MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdfPandemic of Covid-19 as Global Entropy When Shannon Theory fits To-Date Data of New Infections.pdfVer fuenteapplication/pdf98789http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/3/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdfbaaa74cf8ea5af602f8ffe9b97337c32MD5320.500.13067/1814oai:repositorio.autonoma.edu.pe:20.500.13067/18142022-04-30 03:00:22.989Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
dc.title.es_PE.fl_str_mv |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
title |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
spellingShingle |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections Nieto-Chaupis, Huber COVID-19 Pandemics Fitting Europe Big Data Airports Entropy https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
title_full |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
title_fullStr |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
title_full_unstemmed |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
title_sort |
Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
COVID-19 Pandemics Fitting Europe Big Data Airports Entropy |
topic |
COVID-19 Pandemics Fitting Europe Big Data Airports Entropy https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
It is well-known that Coronavirus has been propagated due to human activities mainly based at intercontinental flights. Thus, in the first months of 2020, most new countries have already presented peaks in the number of infections, so that airports and borders were closed. With the social restrictions imposed along the beginning of second semester of 2020, the curve of cases of infections has exhibited to be flat in comparison to the beginning of 2020. Therefore, the human activities of end-of-year 2020 have caused againg peaks as the second wave of the pandemic in most countries. So far, by the end of 2021, most countries particularly located at Europe, are exhibiting the fourth wave. In this paper, the entropy of Shannon is considered as inherent mechanism and responsible of waves and large peaks of the number of infections. Modelling of data, the results of this paper suggest the inherent presence of a global entropy due to the transfer of randomness between neighboring countries. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-04-29T17:58:08Z |
dc.date.available.none.fl_str_mv |
2022-04-29T17:58:08Z |
dc.date.issued.fl_str_mv |
2022-01-31 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis, H. (2021). Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections. In 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) (pp. 298-301). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-6654-3755-4 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1814 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ICEIB53692.2021.9686434 |
identifier_str_mv |
Nieto-Chaupis, H. (2021). Pandemic of Covid-19 as Global Entropy: When Shannon Theory fits To-Date Data of New Infections. In 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) (pp. 298-301). IEEE. 978-1-6654-3755-4 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB) |
url |
https://hdl.handle.net/20.500.13067/1814 https://doi.org/10.1109/ICEIB53692.2021.9686434 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125839956&doi=10.1109%2fICEIB53692.2021.9686434&partnerID=40 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Autónoma del Perú |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
298 |
dc.source.endpage.es_PE.fl_str_mv |
301 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/4/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/5/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1814/3/Pandemic%20of%20Covid-19%20as%20Global%20Entropy%20When%20Shannon%20Theory%20fits%20To-Date%20Data%20of%20New%20Infections.pdf |
bitstream.checksum.fl_str_mv |
5431eb06c392c97624fd8b8e3580b219 3617ad2c4a79e882e4fe56602a293ed1 9243398ff393db1861c890baeaeee5f9 baaa74cf8ea5af602f8ffe9b97337c32 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399984045654016 |
score |
13.887938 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).