Forest fire management using machine learning techniques

Descripción del Articulo

As per the latest survey produced by the Forest Survey, the forest cover is 19.27% of the geographic area. According to this report every country can meet the human needs of 16% of the world’s population from the 1% of the world’s forest resource. The Forest Survey said that 90% of the forest fires...

Descripción completa

Detalles Bibliográficos
Autores: Harishchander, Anandaram, Nagalakshmi, M, Cosio Borda, Ricardo Fernando, Kiruthika, K, Yogadinesh, S
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2832
Enlace del recurso:https://hdl.handle.net/20.500.13067/2832
https://doi.org/10.1016/j.measen.2022.100659
Nivel de acceso:acceso abierto
Materia:Safety management
Efficiency
Ground temperature
Land surface temperature
Radiance
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_5ffb160e1580f11805f554c08632062b
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2832
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Harishchander, AnandaramNagalakshmi, MCosio Borda, Ricardo FernandoKiruthika, KYogadinesh, S2023-11-30T21:11:01Z2023-11-30T21:11:01Z2023https://hdl.handle.net/20.500.13067/2832Measurement: Sensorshttps://doi.org/10.1016/j.measen.2022.100659As per the latest survey produced by the Forest Survey, the forest cover is 19.27% of the geographic area. According to this report every country can meet the human needs of 16% of the world’s population from the 1% of the world’s forest resource. The Forest Survey said that 90% of the forest fires created by humans. They pose a threat not only to the forest wealth but also this leads to the main threat to biodiversity, a change in the ecosystem. The environment gets dry and twinges, which leads to produce flames in the forest. There are two types of forest fire i) Surface Fire and ii) Crown Fire iii) Ground Fire. Surface Fire: The forest fire starts its flame primarily as a surface fire, spreading along the ground with the help of dry grasses and so on. Crown Fire: It starts flame on the crown of the shrubs, bushes and trees and sustained on the surface. This type of fire is very dangerous because resinous material given off burning logs burn furiously. If there is a slope with fire then the fire spread from the top of the slope to the down. Ground fire occurs in the humus and peaty layers beneath the litter of under composed portion of forest floor with intense heat but practically no flame. Such fires are relatively rare and have been recorded occasionally at high altitudes in Himalayan fir and spruce forests. In Remote sensing field, the knowledge of surface temperature plays a vital role. By using brightness and emissivity feature, temperature mapping and analysis can be done. The surface temperature values are measured to detect the forest fire from the ASTER image. ASTER stands for Advanced Space borne Thermal Emission and Reflection Radiometer. ASTER image contains 5 thermal bands (wave length ranges from 8.125 μm to 11.65 μm) and these are used in comparison. To convert digital numbers to exoatmospheric radiance, ASTER thermal bands are used. The converted exoatmospheric radiance is then mapped into surface radiance using the Emissivity Normalization method.application/pdfengElsevierinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Safety managementEfficiencyGround temperatureLand surface temperatureRadiancehttps://purl.org/pe-repo/ocde/ford#2.02.04Forest fire management using machine learning techniquesinfo:eu-repo/semantics/article25202316reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT18_2023.pdf.txt18_2023.pdf.txtExtracted texttext/plain37537http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/3/18_2023.pdf.txtc68bdfabe8a65b3ab49225b8aaad75b3MD53THUMBNAIL18_2023.pdf.jpg18_2023.pdf.jpgGenerated Thumbnailimage/jpeg7270http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/4/18_2023.pdf.jpgb1685c9c99ac3654cd2796973e41c662MD54ORIGINAL18_2023.pdf18_2023.pdfArtículoapplication/pdf1414888http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/1/18_2023.pdf491f96f8b535c45c01bdd42b6c71e3a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2832oai:repositorio.autonoma.edu.pe:20.500.13067/28322023-12-01 03:00:33.007Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Forest fire management using machine learning techniques
title Forest fire management using machine learning techniques
spellingShingle Forest fire management using machine learning techniques
Harishchander, Anandaram
Safety management
Efficiency
Ground temperature
Land surface temperature
Radiance
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Forest fire management using machine learning techniques
title_full Forest fire management using machine learning techniques
title_fullStr Forest fire management using machine learning techniques
title_full_unstemmed Forest fire management using machine learning techniques
title_sort Forest fire management using machine learning techniques
author Harishchander, Anandaram
author_facet Harishchander, Anandaram
Nagalakshmi, M
Cosio Borda, Ricardo Fernando
Kiruthika, K
Yogadinesh, S
author_role author
author2 Nagalakshmi, M
Cosio Borda, Ricardo Fernando
Kiruthika, K
Yogadinesh, S
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Harishchander, Anandaram
Nagalakshmi, M
Cosio Borda, Ricardo Fernando
Kiruthika, K
Yogadinesh, S
dc.subject.es_PE.fl_str_mv Safety management
Efficiency
Ground temperature
Land surface temperature
Radiance
topic Safety management
Efficiency
Ground temperature
Land surface temperature
Radiance
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description As per the latest survey produced by the Forest Survey, the forest cover is 19.27% of the geographic area. According to this report every country can meet the human needs of 16% of the world’s population from the 1% of the world’s forest resource. The Forest Survey said that 90% of the forest fires created by humans. They pose a threat not only to the forest wealth but also this leads to the main threat to biodiversity, a change in the ecosystem. The environment gets dry and twinges, which leads to produce flames in the forest. There are two types of forest fire i) Surface Fire and ii) Crown Fire iii) Ground Fire. Surface Fire: The forest fire starts its flame primarily as a surface fire, spreading along the ground with the help of dry grasses and so on. Crown Fire: It starts flame on the crown of the shrubs, bushes and trees and sustained on the surface. This type of fire is very dangerous because resinous material given off burning logs burn furiously. If there is a slope with fire then the fire spread from the top of the slope to the down. Ground fire occurs in the humus and peaty layers beneath the litter of under composed portion of forest floor with intense heat but practically no flame. Such fires are relatively rare and have been recorded occasionally at high altitudes in Himalayan fir and spruce forests. In Remote sensing field, the knowledge of surface temperature plays a vital role. By using brightness and emissivity feature, temperature mapping and analysis can be done. The surface temperature values are measured to detect the forest fire from the ASTER image. ASTER stands for Advanced Space borne Thermal Emission and Reflection Radiometer. ASTER image contains 5 thermal bands (wave length ranges from 8.125 μm to 11.65 μm) and these are used in comparison. To convert digital numbers to exoatmospheric radiance, ASTER thermal bands are used. The converted exoatmospheric radiance is then mapped into surface radiance using the Emissivity Normalization method.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T21:11:01Z
dc.date.available.none.fl_str_mv 2023-11-30T21:11:01Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2832
dc.identifier.journal.es_PE.fl_str_mv Measurement: Sensors
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.measen.2022.100659
url https://hdl.handle.net/20.500.13067/2832
https://doi.org/10.1016/j.measen.2022.100659
identifier_str_mv Measurement: Sensors
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 25
dc.source.issue.es_PE.fl_str_mv 2023
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 6
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/3/18_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/4/18_2023.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/1/18_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2832/2/license.txt
bitstream.checksum.fl_str_mv c68bdfabe8a65b3ab49225b8aaad75b3
b1685c9c99ac3654cd2796973e41c662
491f96f8b535c45c01bdd42b6c71e3a9
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915411054395392
score 13.904524
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).