Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system

Descripción del Articulo

The Moche River water is contaminated due to informal mining and other anthropogenic activities. The pollutants are primarily organic matter and heavy metals, which contribute to the water’s elevated color and turbidity levels. This contaminated water is used for irrigating surrounding areas, leadin...

Descripción completa

Detalles Bibliográficos
Autores: Meregildo Collave, Christian Xavier, Lázaro Bacilio, Robert Jefferson, Guerrero Escobedo, Adolfo Enrique, Rodriguez Espinoza, Ronald Fernando, Azabache Liza, Yrwin Francisco, Ipanaqué Roña, Juan Manuel
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3489
Enlace del recurso:https://hdl.handle.net/20.500.13067/3489
https://doi.org/10.1016/j.cscee.2024.100978
Nivel de acceso:acceso abierto
Materia:Aluminum polychloride
Arduino colorimeter
Coagulation
Ferric sulfate
Moche river
TS-300B sensor
Turbidity
https://purl.org/pe-repo/ocde/ford#2.07.00
id AUTO_5b8c17d43a7720308fa65a59d615fda4
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3489
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Meregildo Collave, Christian XavierLázaro Bacilio, Robert JeffersonGuerrero Escobedo, Adolfo EnriqueRodriguez Espinoza, Ronald FernandoAzabache Liza, Yrwin FranciscoIpanaqué Roña, Juan Manuel2024-11-14T20:02:53Z2024-11-14T20:02:53Z2023https://hdl.handle.net/20.500.13067/3489Case Studies in Chemical and Environmental Engineeringhttps://doi.org/10.1016/j.cscee.2024.100978The Moche River water is contaminated due to informal mining and other anthropogenic activities. The pollutants are primarily organic matter and heavy metals, which contribute to the water’s elevated color and turbidity levels. This contaminated water is used for irrigating surrounding areas, leading to the production of contaminated crops. Monitoring color and turbidity requires expensive instruments. In this study, a water sample was collected from the district of Poroto, located in the province of Trujillo, La Libertad region. Approximately 200 L were sampled, with a pH of 5.2 and a turbidity of 12.04 NTU. The research employs a combined treatment process involving coagulants, specifically ferric sulfate and polyaluminum chloride, followed by filtration through activated carbon. Additionally, a low-cost monitoring system using an Arduino-based turbidimeter and colorimeter is proposed to measure water quality before and after treatment. The system incorporates a TS-300B turbidity sensor and a custom-built Arduino colorimeter utilizing the BPW34 sensor. Experimental results show a maximum color removal efficiency of 95.71% and a turbidity reduction of 70.43% under optimal conditions. The activated carbon used had the following properties: an iodine number of 902.85 mg/g, 10.73 mmol of acidic groups, and a point of zero charge (PZC) of 9.3. The turbidimeter and colorimeter cost $40.46 and $58.15, respectively. Validation parameters for the instruments were as follows: Pearson correlation coefficient of 99.98%, MAE of 2.46, RMSE of 3.80, and MAPE of 2.18% for the turbidimeter, and Pearson correlation coefficient of 99.73%, MAE of 0.07, RMSE of 0.08, and MAPE of 9.44 % for the colorimeter. This innovative solution demonstrates the feasibility of using low-cost technology for effective water treatment, contributing to sustainable agricultural practices by improving irrigation water quality and promoting better crop health and environmental protection.application/pdfengElsevierinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA10118reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAAluminum polychlorideArduino colorimeterCoagulationFerric sulfateMoche riverTS-300B sensorTurbidityhttps://purl.org/pe-repo/ocde/ford#2.07.00Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino systeminfo:eu-repo/semantics/articleTEXT88.pdf.txt88.pdf.txtExtracted texttext/plain107083http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/3/88.pdf.txta90ba5c3c05541ef9a47b22404ca652fMD53THUMBNAIL88.pdf.jpg88.pdf.jpgGenerated Thumbnailimage/jpeg7390http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/4/88.pdf.jpg87761e1845eea9ff56fd8fea4ce96348MD54ORIGINAL88.pdf88.pdfArtículoapplication/pdf8595263http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/1/88.pdf41663be695987863e8561eb6ec4509a1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/3489oai:repositorio.autonoma.edu.pe:20.500.13067/34892025-01-06 16:58:28.493Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
title Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
spellingShingle Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
Meregildo Collave, Christian Xavier
Aluminum polychloride
Arduino colorimeter
Coagulation
Ferric sulfate
Moche river
TS-300B sensor
Turbidity
https://purl.org/pe-repo/ocde/ford#2.07.00
title_short Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
title_full Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
title_fullStr Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
title_full_unstemmed Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
title_sort Turbidity and color removal from irrigation water, with coagulants and activated carbon, controlled by an Arduino system
author Meregildo Collave, Christian Xavier
author_facet Meregildo Collave, Christian Xavier
Lázaro Bacilio, Robert Jefferson
Guerrero Escobedo, Adolfo Enrique
Rodriguez Espinoza, Ronald Fernando
Azabache Liza, Yrwin Francisco
Ipanaqué Roña, Juan Manuel
author_role author
author2 Lázaro Bacilio, Robert Jefferson
Guerrero Escobedo, Adolfo Enrique
Rodriguez Espinoza, Ronald Fernando
Azabache Liza, Yrwin Francisco
Ipanaqué Roña, Juan Manuel
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Meregildo Collave, Christian Xavier
Lázaro Bacilio, Robert Jefferson
Guerrero Escobedo, Adolfo Enrique
Rodriguez Espinoza, Ronald Fernando
Azabache Liza, Yrwin Francisco
Ipanaqué Roña, Juan Manuel
dc.subject.es_PE.fl_str_mv Aluminum polychloride
Arduino colorimeter
Coagulation
Ferric sulfate
Moche river
TS-300B sensor
Turbidity
topic Aluminum polychloride
Arduino colorimeter
Coagulation
Ferric sulfate
Moche river
TS-300B sensor
Turbidity
https://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.00
description The Moche River water is contaminated due to informal mining and other anthropogenic activities. The pollutants are primarily organic matter and heavy metals, which contribute to the water’s elevated color and turbidity levels. This contaminated water is used for irrigating surrounding areas, leading to the production of contaminated crops. Monitoring color and turbidity requires expensive instruments. In this study, a water sample was collected from the district of Poroto, located in the province of Trujillo, La Libertad region. Approximately 200 L were sampled, with a pH of 5.2 and a turbidity of 12.04 NTU. The research employs a combined treatment process involving coagulants, specifically ferric sulfate and polyaluminum chloride, followed by filtration through activated carbon. Additionally, a low-cost monitoring system using an Arduino-based turbidimeter and colorimeter is proposed to measure water quality before and after treatment. The system incorporates a TS-300B turbidity sensor and a custom-built Arduino colorimeter utilizing the BPW34 sensor. Experimental results show a maximum color removal efficiency of 95.71% and a turbidity reduction of 70.43% under optimal conditions. The activated carbon used had the following properties: an iodine number of 902.85 mg/g, 10.73 mmol of acidic groups, and a point of zero charge (PZC) of 9.3. The turbidimeter and colorimeter cost $40.46 and $58.15, respectively. Validation parameters for the instruments were as follows: Pearson correlation coefficient of 99.98%, MAE of 2.46, RMSE of 3.80, and MAPE of 2.18% for the turbidimeter, and Pearson correlation coefficient of 99.73%, MAE of 0.07, RMSE of 0.08, and MAPE of 9.44 % for the colorimeter. This innovative solution demonstrates the feasibility of using low-cost technology for effective water treatment, contributing to sustainable agricultural practices by improving irrigation water quality and promoting better crop health and environmental protection.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-11-14T20:02:53Z
dc.date.available.none.fl_str_mv 2024-11-14T20:02:53Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3489
dc.identifier.journal.es_PE.fl_str_mv Case Studies in Chemical and Environmental Engineering
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.1016/j.cscee.2024.100978
url https://hdl.handle.net/20.500.13067/3489
https://doi.org/10.1016/j.cscee.2024.100978
identifier_str_mv Case Studies in Chemical and Environmental Engineering
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 10
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 18
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/3/88.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/4/88.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/1/88.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3489/2/license.txt
bitstream.checksum.fl_str_mv a90ba5c3c05541ef9a47b22404ca652f
87761e1845eea9ff56fd8fea4ce96348
41663be695987863e8561eb6ec4509a1
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915449069469696
score 13.968741
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).