Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms

Descripción del Articulo

The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2614
Enlace del recurso:https://hdl.handle.net/20.500.13067/2614
https://doi.org/10.14569/IJACSA.2022.0130877
Nivel de acceso:acceso abierto
Materia:Classical electrodynamics
Quantum mechanics
Machine learning principles
Mitchell’s criteria
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_1e6ce7a1c749735f1d3cc23870d72e7a
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2614
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Nieto-Chaupis, Huber2023-09-21T16:29:13Z2023-09-21T16:29:13Z2022https://hdl.handle.net/20.500.13067/2614(IJACSA) International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2022.0130877The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense laser. The usage of mathematical strategies might be correct to some extent so that one expects that classical equation would contain a dual meaning. The concrete case of Compton scattering is analyzed. While at some quantum field theories might not be scrutinized by computer algorithms, contrary to this Quantum Electrodynamics would constitute a robust example.application/pdfeng(IJACSA) International Journal of Advanced Computer Science and Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Classical electrodynamicsQuantum mechanicsMachine learning principlesMitchell’s criteriahttps://purl.org/pe-repo/ocde/ford#2.02.04Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithmsinfo:eu-repo/semantics/article138676681reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT105_2022.pdf.txt105_2022.pdf.txtExtracted texttext/plain29546http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/3/105_2022.pdf.txta53a9185b7452e32cfccae203772ccbaMD53THUMBNAIL105_2022.pdf.jpg105_2022.pdf.jpgGenerated Thumbnailimage/jpeg7934http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/4/105_2022.pdf.jpgfbb90d413e268756299d6bf16de378deMD54ORIGINAL105_2022.pdf105_2022.pdfArtículoapplication/pdf2797396http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/1/105_2022.pdf56baae21a7ef3536d7920122ae611a7aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2614oai:repositorio.autonoma.edu.pe:20.500.13067/26142023-09-22 03:00:27.293Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
title Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
spellingShingle Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
Nieto-Chaupis, Huber
Classical electrodynamics
Quantum mechanics
Machine learning principles
Mitchell’s criteria
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
title_full Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
title_fullStr Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
title_full_unstemmed Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
title_sort Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Classical electrodynamics
Quantum mechanics
Machine learning principles
Mitchell’s criteria
topic Classical electrodynamics
Quantum mechanics
Machine learning principles
Mitchell’s criteria
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense laser. The usage of mathematical strategies might be correct to some extent so that one expects that classical equation would contain a dual meaning. The concrete case of Compton scattering is analyzed. While at some quantum field theories might not be scrutinized by computer algorithms, contrary to this Quantum Electrodynamics would constitute a robust example.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-09-21T16:29:13Z
dc.date.available.none.fl_str_mv 2023-09-21T16:29:13Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2614
dc.identifier.journal.es_PE.fl_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2022.0130877
url https://hdl.handle.net/20.500.13067/2614
https://doi.org/10.14569/IJACSA.2022.0130877
identifier_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv (IJACSA) International Journal of Advanced Computer Science and Applications
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 13
dc.source.issue.es_PE.fl_str_mv 8
dc.source.beginpage.es_PE.fl_str_mv 676
dc.source.endpage.es_PE.fl_str_mv 681
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/3/105_2022.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/4/105_2022.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/1/105_2022.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/2/license.txt
bitstream.checksum.fl_str_mv a53a9185b7452e32cfccae203772ccba
fbb90d413e268756299d6bf16de378de
56baae21a7ef3536d7920122ae611a7a
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915215954247680
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).