Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms
Descripción del Articulo
The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2614 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/2614 https://doi.org/10.14569/IJACSA.2022.0130877 |
Nivel de acceso: | acceso abierto |
Materia: | Classical electrodynamics Quantum mechanics Machine learning principles Mitchell’s criteria https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_1e6ce7a1c749735f1d3cc23870d72e7a |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2614 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Nieto-Chaupis, Huber2023-09-21T16:29:13Z2023-09-21T16:29:13Z2022https://hdl.handle.net/20.500.13067/2614(IJACSA) International Journal of Advanced Computer Science and Applicationshttps://doi.org/10.14569/IJACSA.2022.0130877The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense laser. The usage of mathematical strategies might be correct to some extent so that one expects that classical equation would contain a dual meaning. The concrete case of Compton scattering is analyzed. While at some quantum field theories might not be scrutinized by computer algorithms, contrary to this Quantum Electrodynamics would constitute a robust example.application/pdfeng(IJACSA) International Journal of Advanced Computer Science and Applicationsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Classical electrodynamicsQuantum mechanicsMachine learning principlesMitchell’s criteriahttps://purl.org/pe-repo/ocde/ford#2.02.04Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithmsinfo:eu-repo/semantics/article138676681reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXT105_2022.pdf.txt105_2022.pdf.txtExtracted texttext/plain29546http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/3/105_2022.pdf.txta53a9185b7452e32cfccae203772ccbaMD53THUMBNAIL105_2022.pdf.jpg105_2022.pdf.jpgGenerated Thumbnailimage/jpeg7934http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/4/105_2022.pdf.jpgfbb90d413e268756299d6bf16de378deMD54ORIGINAL105_2022.pdf105_2022.pdfArtículoapplication/pdf2797396http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/1/105_2022.pdf56baae21a7ef3536d7920122ae611a7aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2614oai:repositorio.autonoma.edu.pe:20.500.13067/26142023-09-22 03:00:27.293Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
title |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
spellingShingle |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms Nieto-Chaupis, Huber Classical electrodynamics Quantum mechanics Machine learning principles Mitchell’s criteria https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
title_full |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
title_fullStr |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
title_full_unstemmed |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
title_sort |
Duality at Classical Electrodynamics and its Interpretation through Machine Learning Algorithms |
author |
Nieto-Chaupis, Huber |
author_facet |
Nieto-Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
dc.subject.es_PE.fl_str_mv |
Classical electrodynamics Quantum mechanics Machine learning principles Mitchell’s criteria |
topic |
Classical electrodynamics Quantum mechanics Machine learning principles Mitchell’s criteria https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The aim of this paper is to investigate the hypothetical duality of classical electrodynamics and quantum mechanics through the usage of Machine Learning principles. Thus, the Mitchell’s criteria are used. Essentially this paper is focused on the radiated energy by a free electron inside an intense laser. The usage of mathematical strategies might be correct to some extent so that one expects that classical equation would contain a dual meaning. The concrete case of Compton scattering is analyzed. While at some quantum field theories might not be scrutinized by computer algorithms, contrary to this Quantum Electrodynamics would constitute a robust example. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-09-21T16:29:13Z |
dc.date.available.none.fl_str_mv |
2023-09-21T16:29:13Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2614 |
dc.identifier.journal.es_PE.fl_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2022.0130877 |
url |
https://hdl.handle.net/20.500.13067/2614 https://doi.org/10.14569/IJACSA.2022.0130877 |
identifier_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
(IJACSA) International Journal of Advanced Computer Science and Applications |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
13 |
dc.source.issue.es_PE.fl_str_mv |
8 |
dc.source.beginpage.es_PE.fl_str_mv |
676 |
dc.source.endpage.es_PE.fl_str_mv |
681 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/3/105_2022.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/4/105_2022.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/1/105_2022.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2614/2/license.txt |
bitstream.checksum.fl_str_mv |
a53a9185b7452e32cfccae203772ccba fbb90d413e268756299d6bf16de378de 56baae21a7ef3536d7920122ae611a7a 9243398ff393db1861c890baeaeee5f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915215954247680 |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).