THE KEYS TO ARTIFICIAL LEARNING
Descripción del Articulo
Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time wa...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Ricardo Palma |
| Repositorio: | Revista URP - Paideia XXI |
| Lenguaje: | español |
| OAI Identifier: | oai:oai.revistas.urp.edu.pe:article/3772 |
| Enlace del recurso: | http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772 |
| Nivel de acceso: | acceso abierto |
| id |
2519-5700_64b162a9e8a618e1af34d429d1a226c1 |
|---|---|
| oai_identifier_str |
oai:oai.revistas.urp.edu.pe:article/3772 |
| network_acronym_str |
2519-5700 |
| repository_id_str |
|
| network_name_str |
Revista URP - Paideia XXI |
| spelling |
THE KEYS TO ARTIFICIAL LEARNINGLAS CLAVES DEL APRENDIZAJE ARTIFICIALRetto-Manrique, JesúsRelevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networksSe exponen puntos relevantes del aprendizaje artificial a fin de entenderlo de manera sencilla, partiendo de algunas consideraciones y comparaciones con el aprendizaje humano. Se narran los primeros pasos que dieron inicio al largo camino del desarrollo de esta facultad en las máquinas, proceso que en poco tiempo fue alcanzando metas impensables gracias al impulso conjunto de la microelectrónica, la computación, y las neurociencias. Se destaca el rol de la imitación robótica como técnica eficaz para adquirir conductas modelos, sin necesidad de procesos algorítmicos complejos. Luego se describe la secuencia que hace posible que un robot bebé aprenda: Recepción / Exploración, Reacción, Refuerzo, Repetición de la rutina, Aprendizaje propiamente dicho, y Predicción. Se concluye que el progreso de la inteligencia artificial ha generado modelos computacionales que hoy hacen posible incluso el aprendizaje autónomo de las máquinas, las mismas que en un futuro no lejano podrán además diseñar sus propias estrategias de aprendizaje. Palabras clave: Aprendizaje – Aprendizaje artificial – Robots – Inteligencia Artificial – Aprendizaje profundo – Redes neuronalesUniversidad Ricardo Palma2021-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulo evaluado por paresapplication/pdfhttp://revistas.urp.edu.pe/index.php/Paideia/article/view/377210.31381/paideia xxi.v11i1.3772Paideia XXI; Vol. 11 Núm. 1 (2021): PAIDEIA XXI Journal Manuscript accepted, early view2519-57002221-777010.31381/paideia xxi.v11i1reponame:Revista URP - Paideia XXIinstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Paideia/article/view/3772/4748Derechos de autor 2021 Paideia XXIinfo:eu-repo/semantics/openAccess2021-05-29T16:30:13Zmail@mail.com - |
| dc.title.none.fl_str_mv |
THE KEYS TO ARTIFICIAL LEARNING LAS CLAVES DEL APRENDIZAJE ARTIFICIAL |
| title |
THE KEYS TO ARTIFICIAL LEARNING |
| spellingShingle |
THE KEYS TO ARTIFICIAL LEARNING Retto-Manrique, Jesús |
| title_short |
THE KEYS TO ARTIFICIAL LEARNING |
| title_full |
THE KEYS TO ARTIFICIAL LEARNING |
| title_fullStr |
THE KEYS TO ARTIFICIAL LEARNING |
| title_full_unstemmed |
THE KEYS TO ARTIFICIAL LEARNING |
| title_sort |
THE KEYS TO ARTIFICIAL LEARNING |
| dc.creator.none.fl_str_mv |
Retto-Manrique, Jesús |
| author |
Retto-Manrique, Jesús |
| author_facet |
Retto-Manrique, Jesús |
| author_role |
author |
| dc.description.none.fl_txt_mv |
Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networks Se exponen puntos relevantes del aprendizaje artificial a fin de entenderlo de manera sencilla, partiendo de algunas consideraciones y comparaciones con el aprendizaje humano. Se narran los primeros pasos que dieron inicio al largo camino del desarrollo de esta facultad en las máquinas, proceso que en poco tiempo fue alcanzando metas impensables gracias al impulso conjunto de la microelectrónica, la computación, y las neurociencias. Se destaca el rol de la imitación robótica como técnica eficaz para adquirir conductas modelos, sin necesidad de procesos algorítmicos complejos. Luego se describe la secuencia que hace posible que un robot bebé aprenda: Recepción / Exploración, Reacción, Refuerzo, Repetición de la rutina, Aprendizaje propiamente dicho, y Predicción. Se concluye que el progreso de la inteligencia artificial ha generado modelos computacionales que hoy hacen posible incluso el aprendizaje autónomo de las máquinas, las mismas que en un futuro no lejano podrán además diseñar sus propias estrategias de aprendizaje. Palabras clave: Aprendizaje – Aprendizaje artificial – Robots – Inteligencia Artificial – Aprendizaje profundo – Redes neuronales |
| description |
Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networks |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-03-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo evaluado por pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772 10.31381/paideia xxi.v11i1.3772 |
| url |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772 |
| identifier_str_mv |
10.31381/paideia xxi.v11i1.3772 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772/4748 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2021 Paideia XXI info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2021 Paideia XXI |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| dc.source.none.fl_str_mv |
Paideia XXI; Vol. 11 Núm. 1 (2021): PAIDEIA XXI Journal Manuscript accepted, early view 2519-5700 2221-7770 10.31381/paideia xxi.v11i1 reponame:Revista URP - Paideia XXI instname:Universidad Ricardo Palma instacron:URP |
| reponame_str |
Revista URP - Paideia XXI |
| collection |
Revista URP - Paideia XXI |
| instname_str |
Universidad Ricardo Palma |
| instacron_str |
URP |
| institution |
URP |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701110959417851904 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).