THE KEYS TO ARTIFICIAL LEARNING

Descripción del Articulo

Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time wa...

Descripción completa

Detalles Bibliográficos
Autor: Retto-Manrique, Jesús
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Ricardo Palma
Repositorio:Revista URP - Paideia XXI
Lenguaje:español
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/3772
Enlace del recurso:http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772
Nivel de acceso:acceso abierto
id 2519-5700_64b162a9e8a618e1af34d429d1a226c1
oai_identifier_str oai:oai.revistas.urp.edu.pe:article/3772
network_acronym_str 2519-5700
repository_id_str
network_name_str Revista URP - Paideia XXI
spelling THE KEYS TO ARTIFICIAL LEARNINGLAS CLAVES DEL APRENDIZAJE ARTIFICIALRetto-Manrique, JesúsRelevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networksSe exponen puntos relevantes del aprendizaje artificial a fin de entenderlo de manera sencilla, partiendo de algunas consideraciones y comparaciones con el aprendizaje humano. Se narran los primeros pasos que dieron inicio al largo camino del desarrollo de esta facultad en las máquinas, proceso que en poco tiempo fue alcanzando metas impensables gracias al impulso conjunto de la microelectrónica, la computación, y las neurociencias. Se destaca el rol de la imitación robótica como técnica eficaz para adquirir conductas modelos, sin necesidad de procesos algorítmicos complejos. Luego se describe la secuencia que hace posible que un robot bebé aprenda: Recepción / Exploración, Reacción, Refuerzo, Repetición de la rutina, Aprendizaje propiamente dicho, y Predicción. Se concluye que el progreso de la inteligencia artificial ha generado modelos computacionales que hoy hacen posible incluso el aprendizaje autónomo de las máquinas, las mismas que en un futuro no lejano podrán además diseñar sus propias estrategias de aprendizaje. Palabras clave: Aprendizaje – Aprendizaje artificial – Robots – Inteligencia Artificial – Aprendizaje profundo – Redes neuronalesUniversidad Ricardo Palma2021-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulo evaluado por paresapplication/pdfhttp://revistas.urp.edu.pe/index.php/Paideia/article/view/377210.31381/paideia xxi.v11i1.3772Paideia XXI; Vol. 11 Núm. 1 (2021): PAIDEIA XXI Journal Manuscript accepted, early view2519-57002221-777010.31381/paideia xxi.v11i1reponame:Revista URP - Paideia XXIinstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Paideia/article/view/3772/4748Derechos de autor 2021 Paideia XXIinfo:eu-repo/semantics/openAccess2021-05-29T16:30:13Zmail@mail.com -
dc.title.none.fl_str_mv THE KEYS TO ARTIFICIAL LEARNING
LAS CLAVES DEL APRENDIZAJE ARTIFICIAL
title THE KEYS TO ARTIFICIAL LEARNING
spellingShingle THE KEYS TO ARTIFICIAL LEARNING
Retto-Manrique, Jesús
title_short THE KEYS TO ARTIFICIAL LEARNING
title_full THE KEYS TO ARTIFICIAL LEARNING
title_fullStr THE KEYS TO ARTIFICIAL LEARNING
title_full_unstemmed THE KEYS TO ARTIFICIAL LEARNING
title_sort THE KEYS TO ARTIFICIAL LEARNING
dc.creator.none.fl_str_mv Retto-Manrique, Jesús
author Retto-Manrique, Jesús
author_facet Retto-Manrique, Jesús
author_role author
dc.description.none.fl_txt_mv Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networks
Se exponen puntos relevantes del aprendizaje artificial a fin de entenderlo de manera sencilla, partiendo de algunas consideraciones y comparaciones con el aprendizaje humano. Se narran los primeros pasos que dieron inicio al largo camino del desarrollo de esta facultad en las máquinas, proceso que en poco tiempo fue alcanzando metas impensables gracias al impulso conjunto de la microelectrónica, la computación, y las neurociencias. Se destaca el rol de la imitación robótica como técnica eficaz para adquirir conductas modelos, sin necesidad de procesos algorítmicos complejos. Luego se describe la secuencia que hace posible que un robot bebé aprenda: Recepción / Exploración, Reacción, Refuerzo, Repetición de la rutina, Aprendizaje propiamente dicho, y Predicción. Se concluye que el progreso de la inteligencia artificial ha generado modelos computacionales que hoy hacen posible incluso el aprendizaje autónomo de las máquinas, las mismas que en un futuro no lejano podrán además diseñar sus propias estrategias de aprendizaje. Palabras clave: Aprendizaje – Aprendizaje artificial – Robots – Inteligencia Artificial – Aprendizaje profundo – Redes neuronales
description Relevant points of artificial learning are exposed in order to understand it in a simple way, starting from some considerations and comparisons with human learning. The first steps that began the long path of the development of this faculty in machines are narrated, a process that in a short time was reaching unthinkable goals thanks to the joint impulse of microelectronics, computing, and neurosciences. The role of robotic imitation is highlighted as an effective technique to acquire model behaviours, without the need for complex algorithmic processes. Then the sequence that makes it possible for a baby robot to learn is described: Reception / Exploration, Reaction, Reinforcement, Repetition of the routine, Learning proper, and Prediction. It is concluded that the progress of artificial intelligence has generated computational models that today make possible even the autonomous learning of machines, which in the not too distant future will also be able to design their own learning strategies Keywords: Learning – Artificial learning – Robots – Artificial intelligence – Deep learning – Neural networks
publishDate 2021
dc.date.none.fl_str_mv 2021-03-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772
10.31381/paideia xxi.v11i1.3772
url http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772
identifier_str_mv 10.31381/paideia xxi.v11i1.3772
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Paideia/article/view/3772/4748
dc.rights.none.fl_str_mv Derechos de autor 2021 Paideia XXI
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Paideia XXI
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Ricardo Palma
publisher.none.fl_str_mv Universidad Ricardo Palma
dc.source.none.fl_str_mv Paideia XXI; Vol. 11 Núm. 1 (2021): PAIDEIA XXI Journal Manuscript accepted, early view
2519-5700
2221-7770
10.31381/paideia xxi.v11i1
reponame:Revista URP - Paideia XXI
instname:Universidad Ricardo Palma
instacron:URP
reponame_str Revista URP - Paideia XXI
collection Revista URP - Paideia XXI
instname_str Universidad Ricardo Palma
instacron_str URP
institution URP
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701110959417851904
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).