Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models

Descripción del Articulo

The respiratory metabolism of fruits is affected by multiple internal (product) and external (environmental) factors that often interact with each other. Among the external factors that have the greatest influence on respiration are temperature, air composition, moisture content and illumination. Th...

Descripción completa

Detalles Bibliográficos
Autores: Pérez-López, Artemio, Ramírez-Guzmán, Martha, Espinosa-Solares, Teodoro, Aguirre-Mandujano, Eleazar, Villaseñor-Perea, Carlos
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Trujillo
Repositorio:Revista UNITRU - Scientia Agropecuaria
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/2801
Enlace del recurso:http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801
Nivel de acceso:acceso abierto
Materia:respiration rate
time series
dynamic regression model
exogenous variables
transfer function.
id 2411-1783_da364509ee99f22a86f508d38765186d
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/2801
network_acronym_str 2411-1783
repository_id_str .
network_name_str Revista UNITRU - Scientia Agropecuaria
spelling Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression modelsPérez-López, ArtemioRamírez-Guzmán, MarthaEspinosa-Solares, TeodoroAguirre-Mandujano, EleazarVillaseñor-Perea, Carlosrespiration ratetime seriesdynamic regression modelexogenous variablestransfer function.The respiratory metabolism of fruits is affected by multiple internal (product) and external (environmental) factors that often interact with each other. Among the external factors that have the greatest influence on respiration are temperature, air composition, moisture content and illumination. The aim of this paper is to elucidate the influence of environmental factors on the respiration rate of peach fruits based on transfer models obtained by dynamic regression modelling (ARIMAX). The fitted ARIMA models met the criteria of parsimony and white noise in residuals. The estimated coefficients of each model were statistically significant under the Durbin-Watson (DW), Akaike (AIC) and Schwarz (SBC) criteria. Transfer functions revealed 0.15% and 1.9% increase, and 0.001% decrease in the respiration rate of the peach fruit for each unit of change in temperature, relative humidity and illumination of the storage environment, respectively. The respiration rate response took place 1-8 minutes after the change in environmental variables had occurred. It was concluded that the dynamic regression modelling is reliable for predicting the physiological response of fruits the effect of external factors imposed continuously during postharvest handling.Universidad Nacional de Trujillo2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/280110.17268/sci.agropecu.2020.01.03Scientia Agropecuaria; Vol. 11 No. 1 (2020): Enero-Marzo; 23-29Scientia Agropecuaria; Vol. 11 Núm. 1 (2020): Enero-Marzo; 23-292306-67412077-9917reponame:Revista UNITRU - Scientia Agropecuariainstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801/2875http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801/3167Derechos de autor 2020 Scientia Agropecuariainfo:eu-repo/semantics/openAccess2021-06-01T15:35:30Zmail@mail.com -
dc.title.none.fl_str_mv Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
title Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
spellingShingle Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
Pérez-López, Artemio
respiration rate
time series
dynamic regression model
exogenous variables
transfer function.
title_short Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
title_full Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
title_fullStr Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
title_full_unstemmed Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
title_sort Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models
dc.creator.none.fl_str_mv Pérez-López, Artemio
Ramírez-Guzmán, Martha
Espinosa-Solares, Teodoro
Aguirre-Mandujano, Eleazar
Villaseñor-Perea, Carlos
author Pérez-López, Artemio
author_facet Pérez-López, Artemio
Ramírez-Guzmán, Martha
Espinosa-Solares, Teodoro
Aguirre-Mandujano, Eleazar
Villaseñor-Perea, Carlos
author_role author
author2 Ramírez-Guzmán, Martha
Espinosa-Solares, Teodoro
Aguirre-Mandujano, Eleazar
Villaseñor-Perea, Carlos
author2_role author
author
author
author
dc.subject.none.fl_str_mv respiration rate
time series
dynamic regression model
exogenous variables
transfer function.
topic respiration rate
time series
dynamic regression model
exogenous variables
transfer function.
dc.description.none.fl_txt_mv The respiratory metabolism of fruits is affected by multiple internal (product) and external (environmental) factors that often interact with each other. Among the external factors that have the greatest influence on respiration are temperature, air composition, moisture content and illumination. The aim of this paper is to elucidate the influence of environmental factors on the respiration rate of peach fruits based on transfer models obtained by dynamic regression modelling (ARIMAX). The fitted ARIMA models met the criteria of parsimony and white noise in residuals. The estimated coefficients of each model were statistically significant under the Durbin-Watson (DW), Akaike (AIC) and Schwarz (SBC) criteria. Transfer functions revealed 0.15% and 1.9% increase, and 0.001% decrease in the respiration rate of the peach fruit for each unit of change in temperature, relative humidity and illumination of the storage environment, respectively. The respiration rate response took place 1-8 minutes after the change in environmental variables had occurred. It was concluded that the dynamic regression modelling is reliable for predicting the physiological response of fruits the effect of external factors imposed continuously during postharvest handling.
description The respiratory metabolism of fruits is affected by multiple internal (product) and external (environmental) factors that often interact with each other. Among the external factors that have the greatest influence on respiration are temperature, air composition, moisture content and illumination. The aim of this paper is to elucidate the influence of environmental factors on the respiration rate of peach fruits based on transfer models obtained by dynamic regression modelling (ARIMAX). The fitted ARIMA models met the criteria of parsimony and white noise in residuals. The estimated coefficients of each model were statistically significant under the Durbin-Watson (DW), Akaike (AIC) and Schwarz (SBC) criteria. Transfer functions revealed 0.15% and 1.9% increase, and 0.001% decrease in the respiration rate of the peach fruit for each unit of change in temperature, relative humidity and illumination of the storage environment, respectively. The respiration rate response took place 1-8 minutes after the change in environmental variables had occurred. It was concluded that the dynamic regression modelling is reliable for predicting the physiological response of fruits the effect of external factors imposed continuously during postharvest handling.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801
10.17268/sci.agropecu.2020.01.03
url http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801
identifier_str_mv 10.17268/sci.agropecu.2020.01.03
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801/2875
http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2801/3167
dc.rights.none.fl_str_mv Derechos de autor 2020 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 11 No. 1 (2020): Enero-Marzo; 23-29
Scientia Agropecuaria; Vol. 11 Núm. 1 (2020): Enero-Marzo; 23-29
2306-6741
2077-9917
reponame:Revista UNITRU - Scientia Agropecuaria
instname:Universidad Nacional de Trujillo
instacron:UNITRU
reponame_str Revista UNITRU - Scientia Agropecuaria
collection Revista UNITRU - Scientia Agropecuaria
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1701379323159642112
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).