Modelos predictivos de la deserción estudiantil en una universidad privada peruana
Descripción del Articulo
La deserción es un problema que afecta a las universidades, públicas y privadas, y acarrea una serie de consecuencias negativas tanto para las instituciones como para los mismos jóvenes, por ello, el objetivo de este estudio fue determinar cómo el uso de modelos predictivos en asignaturas críticas c...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revista UNMSM - Industrial Data |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/15602 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602 |
Nivel de acceso: | acceso abierto |
Materia: | Student desertion university students fail mentoring predictive models Deserción estudiantil estudiantes universitarios desaprobación tutoría modelos predictivos |
id |
1810-9993_4adedd63f5fbd7a5f762638322f84908 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/15602 |
network_acronym_str |
1810-9993 |
repository_id_str |
. |
network_name_str |
Revista UNMSM - Industrial Data |
spelling |
Modelos predictivos de la deserción estudiantil en una universidad privada peruanaPredictive models of student desertion at a private Peruvian universitySifuentes Bitocchi, OswaldoStudent desertionuniversity studentsfailmentoringpredictive modelsDeserción estudiantilestudiantes universitariosdesaprobacióntutoríamodelos predictivosLa deserción es un problema que afecta a las universidades, públicas y privadas, y acarrea una serie de consecuencias negativas tanto para las instituciones como para los mismos jóvenes, por ello, el objetivo de este estudio fue determinar cómo el uso de modelos predictivos en asignaturas críticas contribuye a identificar a los estudiantes en riesgo de deserción. Se diseñaron siete modelos predictivos con la metodología CRISP (Cross-Industry Standard Process for Data Mining) y el historial académico de los estudiantes, para ser aplicados en siete cursos. Entre los principales resultados se puede destacar que los modelos predictivos contribuyeron a reducir en un 25 % y 40 % los niveles de desaprobación y las variables que mejor la predijeron fueron la carrera que estudian (vocación), el número de veces que se matriculan en la asignatura y la nota que tuvieron en matemática o comunicación cuando cursaron el quinto año de secundaria.Desertion is a problem that affects public and private universities, and leads to a series of negative consequences for both institutions and students. Therefore, the objective of this study was to determine how the use of predictive models in low pass-rate courses helps to identify students at risk of desertion. Seven predictive models were designed using CRISP (Cross- Industry Standard Process for Data Mining) methodology and students’ academic records to be applied in seven low pass-rate courses. Among the main results, it can be noted that predictive models contributed to the reduction of fail rates by 25% and 40%, and that the variables that best forecast desertion were career choice (vocation), number of times students enrolled in the course, and grades obtained in mathematics or language arts when students attended the fifth year of high school.Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos2018-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/1560210.15381/idata.v21i2.15602Industrial Data; Vol. 21 Núm. 2 (2018); 47-52Industrial Data; Vol 21 No 2 (2018); 47-521810-99931560-9146reponame:Revista UNMSM - Industrial Datainstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602/13376Derechos de autor 2018 Oswaldo Sifuentes Bitocchihttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2021-06-01T17:27:09Zmail@mail.com - |
dc.title.none.fl_str_mv |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana Predictive models of student desertion at a private Peruvian university |
title |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
spellingShingle |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana Sifuentes Bitocchi, Oswaldo Student desertion university students fail mentoring predictive models Deserción estudiantil estudiantes universitarios desaprobación tutoría modelos predictivos |
title_short |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
title_full |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
title_fullStr |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
title_full_unstemmed |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
title_sort |
Modelos predictivos de la deserción estudiantil en una universidad privada peruana |
dc.creator.none.fl_str_mv |
Sifuentes Bitocchi, Oswaldo |
author |
Sifuentes Bitocchi, Oswaldo |
author_facet |
Sifuentes Bitocchi, Oswaldo |
author_role |
author |
dc.subject.none.fl_str_mv |
Student desertion university students fail mentoring predictive models Deserción estudiantil estudiantes universitarios desaprobación tutoría modelos predictivos |
topic |
Student desertion university students fail mentoring predictive models Deserción estudiantil estudiantes universitarios desaprobación tutoría modelos predictivos |
dc.description.none.fl_txt_mv |
La deserción es un problema que afecta a las universidades, públicas y privadas, y acarrea una serie de consecuencias negativas tanto para las instituciones como para los mismos jóvenes, por ello, el objetivo de este estudio fue determinar cómo el uso de modelos predictivos en asignaturas críticas contribuye a identificar a los estudiantes en riesgo de deserción. Se diseñaron siete modelos predictivos con la metodología CRISP (Cross-Industry Standard Process for Data Mining) y el historial académico de los estudiantes, para ser aplicados en siete cursos. Entre los principales resultados se puede destacar que los modelos predictivos contribuyeron a reducir en un 25 % y 40 % los niveles de desaprobación y las variables que mejor la predijeron fueron la carrera que estudian (vocación), el número de veces que se matriculan en la asignatura y la nota que tuvieron en matemática o comunicación cuando cursaron el quinto año de secundaria. Desertion is a problem that affects public and private universities, and leads to a series of negative consequences for both institutions and students. Therefore, the objective of this study was to determine how the use of predictive models in low pass-rate courses helps to identify students at risk of desertion. Seven predictive models were designed using CRISP (Cross- Industry Standard Process for Data Mining) methodology and students’ academic records to be applied in seven low pass-rate courses. Among the main results, it can be noted that predictive models contributed to the reduction of fail rates by 25% and 40%, and that the variables that best forecast desertion were career choice (vocation), number of times students enrolled in the course, and grades obtained in mathematics or language arts when students attended the fifth year of high school. |
description |
La deserción es un problema que afecta a las universidades, públicas y privadas, y acarrea una serie de consecuencias negativas tanto para las instituciones como para los mismos jóvenes, por ello, el objetivo de este estudio fue determinar cómo el uso de modelos predictivos en asignaturas críticas contribuye a identificar a los estudiantes en riesgo de deserción. Se diseñaron siete modelos predictivos con la metodología CRISP (Cross-Industry Standard Process for Data Mining) y el historial académico de los estudiantes, para ser aplicados en siete cursos. Entre los principales resultados se puede destacar que los modelos predictivos contribuyeron a reducir en un 25 % y 40 % los niveles de desaprobación y las variables que mejor la predijeron fueron la carrera que estudian (vocación), el número de veces que se matriculan en la asignatura y la nota que tuvieron en matemática o comunicación cuando cursaron el quinto año de secundaria. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602 10.15381/idata.v21i2.15602 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602 |
identifier_str_mv |
10.15381/idata.v21i2.15602 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/idata/article/view/15602/13376 |
dc.rights.none.fl_str_mv |
Derechos de autor 2018 Oswaldo Sifuentes Bitocchi http://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2018 Oswaldo Sifuentes Bitocchi http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
publisher.none.fl_str_mv |
Facultad de Ingeniería Industrial, Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Industrial Data; Vol. 21 Núm. 2 (2018); 47-52 Industrial Data; Vol 21 No 2 (2018); 47-52 1810-9993 1560-9146 reponame:Revista UNMSM - Industrial Data instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
reponame_str |
Revista UNMSM - Industrial Data |
collection |
Revista UNMSM - Industrial Data |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1701386359880548352 |
score |
13.959364 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).