Classification of EEG signals using LDA and QDA applied to a Brain Interface - Computer based on P300

Descripción del Articulo

Different Machine Learning techniques have been used in order to identify the wishes of patients with neurodegenerative diseases. For this purpose, a database of electroencephalographic (EEG) signals was used, which were filtered and processed. The determination of the wills of patients was achieved...

Descripción completa

Detalles Bibliográficos
Autores: Cabezas, Franklin Alfredo, Cabezas Soldevilla, Fermín Rafael
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:Revista UNI - Tecnia
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/573
Enlace del recurso:http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/573
Nivel de acceso:acceso abierto
Materia:P300
Machine Learning
Interface cerebro –Computador
Enfermedades Neurodegenerativas
Descripción
Sumario:Different Machine Learning techniques have been used in order to identify the wishes of patients with neurodegenerative diseases. For this purpose, a database of electroencephalographic (EEG) signals was used, which were filtered and processed. The determination of the wills of patients was achieved through the identification of brain waves P300, these signals are presented in the brain in response to an unexpected stimulus and among its many applications is the implementation of the so-called Brain-Computer Interface .
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).