Transfer learning using convolutional neural networks for driver distraction recognition

Descripción del Articulo

In the present work it is proposed to identify if a person is distracted or not, when he is driving a vehicle. This can be achieved by classifying images of drivers to determine if they are available or distracted using convolutional neural networks (CNN) and tools to improve the algorithm, which ar...

Descripción completa

Detalles Bibliográficos
Autores: Bazan Yaranga, Cristopher, Sanchez, Zaid, Rodriguez, Ricardo
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:Revista UNI - Tecnia
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/549
Enlace del recurso:http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/549
Nivel de acceso:acceso abierto
Materia:Transferencia de Aprendizaje
Ingeniería de característica
Conductores distraídos
Redes Neuronales Convolucionales
Descripción
Sumario:In the present work it is proposed to identify if a person is distracted or not, when he is driving a vehicle. This can be achieved by classifying images of drivers to determine if they are available or distracted using convolutional neural networks (CNN) and tools to improve the algorithm, which are Learning Transfer and Characteristics Engineering. Kaggle competition images are used to perform the training, in which you can obtain more results and obtain more results. Later the red extractor of characteristics VGG16 was used, which is a pre-trained model, from which it is lowered in its last layers to reduce the overfit and adapt it to our algorithm. The results obtained in the classifier gave us a training efficiency and validation of 99.30% and 99.46% respectively.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).