1
artículo
Publicado 2021
Enlace

The backscatter coefficient (BSC) quantifies the frequency-dependent reflectivity of tissues. Accurate estimation of the BSC is only possible with the knowledge of the attenuation coefficient slope (ACS) of the tissues under examination. In this study, the use of attenuation maps constructed using full angular spatial compounding (FASC) is proposed for attenuation compensation when imaging integrated BSCs. Experimental validation of the proposed approach was obtained using two cylindrical physical phantoms with off-centered inclusions having different ACS and BSC values than the background, and in a phantom containing an ex vivo chicken breast sample embedded in an agar matrix. With the phantom data, three different ACS maps were employed for attenuation compensation: (1) a ground truth ACS map constructed using insertion loss techniques, (2) the estimated ACS map using FASC attenuation ...