1
tesis de grado
Publicado 2025
Enlace
Enlace
En la presente investigación se aborda el problema de la predicción de incumplimiento (default) en solicitantes no bancarizados de tarjetas de crédito, población que carece de historial crediticio y representa un desafío para las instituciones financieras. El objetivo fue desarrollar un modelo predictivo basado en el algoritmo CatBoost. La metodología se estructuro en cuatro etapas: recolección y preparación de datos históricos, implementación del modelo CatBoost, evaluación mediante métricas como el coeficiente GINI e interpretación de resultados. Los resultados mostraron un buen desempeño predictivo, con un GINI de 45 % en entrenamiento y 42.8 % en validación, demostrando capacidad para diferenciar entre clientes de alto y bajo riesgo. Se concluye que el modelo propuesto ofrece una herramienta efectiva para la gestión del riesgo crediticio en poblaciones no bancarizadas...