1
artículo
Publicado 2014
Enlace
Enlace
The CERTO radio beacon on the C/NOFS satellite sends VHF/UHF radio signals at 150 and 400 MHz to provide measurements of integrated electron density or Total Electron Content (TEC) by an east‐west chain of ground receivers in Peru. Computerized Ionospheric Tomography (CIT) is used to convert the TEC data into two‐dimensional images of electron densities with maximum 5 × 5 km resolution in Longitude‐Altitude space. These images are updated every 95 min as the C/NOFS satellite passes over the receiver network in its low‐latitude orbit with an inclination of 12°. The 2‐D, high‐resolution images of the ionosphere are used to predict the impact of equatorial plasma structures on HF propagation of radar and radio signals. Electron density measurements from the NRL radio tomography chain across Peru are used for simulations of the performance by HF one‐way links. HF ra...
2
artículo
For the first time, equatorial plasma depletions (EPDs) have been imaged in the longitude-altitude plane using radiotomography. High-resolution (~10 km) reconstructions of electron density were derived from total electron content (TEC) measurements provided by a receiver array in Peru. TEC data were obtained from VHF/UHF signals transmitted by the C/NOFS CERTO beacon. EPDs generated pre-midnight were observed near dawn. On one night, the bubble densities were highly reduced, 100-1000 km wide, and embedded within a layerlike ionosphere. Three nights later, the EPDs exhibited similar features, but were embedded in a locally uplifted ionosphere. The C/NOFS in-situ instruments detected a dawn depletion where the reconstruction showed lifted EPDs, implying that the postmidnight electric fields raised sections of ionosphere to altitudes where embedded/reactivated fossil-EPDs were detected ...