1
artículo
Publicado 2018
Enlace
Enlace
A network of high‐frequency (HF) transmitters and receivers used for ionospheric specification is being installed in Peru. The HF transmitters employ multiple frequencies and binary phase coding with pseudorandom noise, and the observables provided by the receivers include group delay, Doppler shift, amplitude, bearing (from interferometry), and polarization. Statistical inverse methods are used to estimate F region density in a volume from the data regionally. The method incorporates raytracing based on the principles of Hamiltonian optics in the forward model and involves an ionospheric parametrization in terms of Chapman functions in the vertical and bicubic B‐spline interpolation in the horizontal. Regularization is employed to minimize the global curvature of the reconstructions. HF beacon data for two nights in January 2018 are presented. We use the reconstructions to investiga...
2
artículo
Publicado 2021
Enlace
Enlace
Data from a network of high-frequency (HF) beacons deployed in Peru are used to estimate the regional ionospheric electron density in a volume. Pseudorange, accumulated carrier phase, and signal power measurements for each of the 36 ray paths provided by the network at a 1 min cadence are incorporated in the estimates. Additional data from the Jicamarca incoherent scatter radar, the Jicamarca sounder, and GPS receivers can also be incorporated. The electron density model is estimated as the solution to a global optimization problem that uses ray tracing in the forward model. The electron density is parametrized in terms of B-splines in the horizontal direction and generalized Chapman functions or related functions in the vertical. Variational sensitivity analysis has been added to the method to allow for the utilization of the signal power observable which gives additional information ab...