1
tesis de maestría
Publicado 2018
Enlace
Enlace
Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal...
2
tesis de maestría
Publicado 2018
Enlace
Enlace
Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal...
3
tesis de maestría
Publicado 2018
Enlace
Enlace
Object recognition in videos is one of the main challenges in computer vision. Several methods have been proposed to achieve this task, such as background subtraction, temporal differencing, optical flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN) for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use for image detection and classification has increased, becoming the state-of-the-art for such task, being Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN model, with minimum modifications, has been succesfully used to detect and classify objects (either static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e. without any pre-processing. In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal...
4
tesis de grado
Publicado 2024
Enlace
Enlace
El desarrollo de tecnologías para la medición precisa de parámetros críticos en la minería, como el rendimiento de ácido y la humedad en minerales de lixiviación, es crucial para optimizar los procesos de extracción de metales. Este trabajo de suficiencia profesional aborda la creación de un equipo especializado diseñado para operar bajo condiciones industriales adversas, proporcionando mediciones confiables y precisas. El objetivo general es desarrollar un equipo que permita medir el rendimiento de ácido y la humedad en minerales de lixiviación. Los objetivos específicos incluyen el diseño del sistema electrónico, la construcción del hardware, el desarrollo del software de control y medición, la implementación de una interfaz de usuario adaptada a entornos industriales y la creación de una guía de localización de averías. Para alcanzar estos objetivos, se realizaro...